Cargando…

Elucidation of the early infection machinery of hepatitis B virus by using bio-nanocapsule

Currently, hepatitis B virus (HBV), upon attaching to human hepatocytes, is considered to interact first with heparan sulfate proteoglycan (HSPG) via an antigenic loop of HBV envelope S protein. Then, it is promptly transferred to the sodium taurocholate cotransporting polypeptide (NTCP) via the myr...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Qiushi, Somiya, Masaharu, Kuroda, Shun’ichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064030/
https://www.ncbi.nlm.nih.gov/pubmed/27784961
http://dx.doi.org/10.3748/wjg.v22.i38.8489
Descripción
Sumario:Currently, hepatitis B virus (HBV), upon attaching to human hepatocytes, is considered to interact first with heparan sulfate proteoglycan (HSPG) via an antigenic loop of HBV envelope S protein. Then, it is promptly transferred to the sodium taurocholate cotransporting polypeptide (NTCP) via the myristoylated N-terminal sequence of pre-S1 region (from Gly-2 to Gly-48, HBV genotype D), and it finally enters the cell by endocytosis. However, it is not clear how HSPG passes HBV to NTCP and how NTCP contributes to the cellular entry of HBV. Owing to the poor availability and the difficulty of manipulations, including fluorophore encapsulation, it has been nearly impossible to perform biochemical and cytochemical analyses using a substantial amount of HBV. A bio-nanocapsule (BNC), which is a hollow nanoparticle consisting of HBV envelope L protein, was efficiently synthesized in Saccharomyces cerevisiae. Since BNC could encapsulate payloads (drugs, genes, proteins) and specifically enter human hepatic cells utilizing HBV-derived infection machinery, it could be used as a model of HBV infection to elucidate the early infection machinery. Recently, it was demonstrated that the N-terminal sequence of pre-S1 region (from Asn-9 to Gly-24) possesses low pH-dependent fusogenic activity, which might play a crucial role in the endosomal escape of BNC payloads and in the uncoating process of HBV. In this minireview, we describe a model in which each domain of the HBV L protein contributes to attachment onto human hepatic cells through HSPG, initiation of endocytosis, interaction with NTCP in endosomes, and consequent provocation of membrane fusion followed by endosomal escape.