Cargando…

Non-equilibrium plasma prevention of Schistosoma japonicum transmission

Schistosoma japonicum is a widespread human and animal parasite that causes intestinal and hepatosplenic schistosomiasis linked to colon, liver and bladder cancers, and anemia. Estimated 230 million people are currently infected with Schistosoma spp, with 779 million people at risk of contracting th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xing-Quan, Wang, Feng-Peng, Chen, Wei, Huang, Jun, Bazaka, Kateryna, Ostrikov, Kostya (Ken)
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064309/
https://www.ncbi.nlm.nih.gov/pubmed/27739459
http://dx.doi.org/10.1038/srep35353
Descripción
Sumario:Schistosoma japonicum is a widespread human and animal parasite that causes intestinal and hepatosplenic schistosomiasis linked to colon, liver and bladder cancers, and anemia. Estimated 230 million people are currently infected with Schistosoma spp, with 779 million people at risk of contracting the parasite. Infection occurs when a host comes into contact with cercariae, a planktonic larval stage of the parasite, and can be prevented by inactivating the larvae, commonly by chemical treatment. We investigated the use of physical non-equilibrium plasma generated at atmospheric pressure using custom-made dielectric barrier discharge reactor to kill S. japonicum cercariae. Survival rate decreased with treatment time and applied power. Plasmas generated in O(2) and air gas discharges were more effective in killing S. japonicum cercariae than that generated in He, which is directly related to the mechanism by which cercariae are inactivated. Reactive oxygen species, such as O atoms, abundant in O(2) plasma and NO in air plasma play a major role in killing of S. japonicum cercariae via oxidation mechanisms. Similar level of efficacy is also shown for a gliding arc discharge plasma jet generated in ambient air, a system that may be more appropriate for scale-up and integration into existing water treatment processes.