Cargando…

Small Diameter Blood Vessels Bioengineered From Human Adipose-derived Stem Cells

Bioengineering of small-diameter blood vessels offers a promising approach to reduce the morbidity associated with coronary artery and peripheral vascular disease. The aim of this study was to construct a two-layered small-diameter blood vessel using smooth muscle cells (SMCs) and endothelial cells...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Renpeng, Zhu, Lei, Fu, Shibo, Qian, Yunliang, Wang, Danru, Wang, Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064394/
https://www.ncbi.nlm.nih.gov/pubmed/27739487
http://dx.doi.org/10.1038/srep35422
Descripción
Sumario:Bioengineering of small-diameter blood vessels offers a promising approach to reduce the morbidity associated with coronary artery and peripheral vascular disease. The aim of this study was to construct a two-layered small-diameter blood vessel using smooth muscle cells (SMCs) and endothelial cells (ECs) differentiated from human adipose-derived stem cells (hASCs). The outer layer was constructed with biodegradable polycaprolactone (PCL)-gelatin mesh seeded with SMCs, and this complex was then rolled around a silicone tube under pulsatile stimulation. After incubation for 6 to 8 weeks, the PCL-gelatin degraded and the luminal supporting silicone tube was removed. The smooth muscle layer was subsequently lined with ECs differentiated from hASCs after stimulation with VEGF and BMP4 in combination hypoxia. The phenotype of differentiated SMCs and ECs, and the cytotoxicity of the scaffold and biomechanical assessment were analyzed. Our results demonstrated that the two-layered bioengineered vessels exhibited biomechanical properties similar to normal human saphenous veins (HSV). Therefore, hASCs provide SMCs and ECs for bioengineering of small-diameter blood vessels.