Cargando…
Facilitative effect of repetitive presentation of one stimulus on cortical responses to other stimuli in macaque monkeys – a possible neural mechanism for mismatch negativity
The event‐related potential ‘mismatch negativity’ (MMN) is an indicator of a perceiver's ability to detect deviations in sensory signal streams. MMN and its homologue in animals, mismatch activity (MMA), are differential neural responses to a repeatedly presented stimulus and a subsequent devia...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064748/ https://www.ncbi.nlm.nih.gov/pubmed/26613160 http://dx.doi.org/10.1111/ejn.13136 |
_version_ | 1782460222008197120 |
---|---|
author | Takaura, Kana Fujii, Naotaka |
author_facet | Takaura, Kana Fujii, Naotaka |
author_sort | Takaura, Kana |
collection | PubMed |
description | The event‐related potential ‘mismatch negativity’ (MMN) is an indicator of a perceiver's ability to detect deviations in sensory signal streams. MMN and its homologue in animals, mismatch activity (MMA), are differential neural responses to a repeatedly presented stimulus and a subsequent deviant stimulus (oddball). Because neural mechanisms underlying MMN and MMA remain unclear, there is a controversy as to whether MMN and MMA arise solely from stimulus‐specific adaptation (SSA), in which the response to a stimulus cumulatively attenuates with its repetitive presentation. To address this issue, we used electrocorticography and the auditory roving‐oddball paradigm in two awake macaque monkeys. We examined the effect of stimulus repetition number on MMA and on responses to repeated stimuli and oddballs across the cerebral cortex in the time–frequency domain. As the repetition number increased, MMA spread across the temporal, frontal and parietal cortices, and each electrode yielded a larger MMA. Surprisingly, this increment in MMA largely depended on response augmentation to the oddball rather than on SSA to the repeated stimulus. Following sufficient repetition, the oddball evoked a spectral power increment in some electrodes on the frontal cortex that had shown no power increase to the stimuli with less or no preceding repetition. We thereby revealed that repetitive presentation of one stimulus not only leads to SSA but also facilitates the cortical response to oddballs involving a wide range of cortical regions. This facilitative effect might underlie the generation of MMN‐like scalp potentials in macaques that potentially shares similar neural mechanisms with MMN in humans. |
format | Online Article Text |
id | pubmed-5064748 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50647482016-10-19 Facilitative effect of repetitive presentation of one stimulus on cortical responses to other stimuli in macaque monkeys – a possible neural mechanism for mismatch negativity Takaura, Kana Fujii, Naotaka Eur J Neurosci Cognitive Neuroscience The event‐related potential ‘mismatch negativity’ (MMN) is an indicator of a perceiver's ability to detect deviations in sensory signal streams. MMN and its homologue in animals, mismatch activity (MMA), are differential neural responses to a repeatedly presented stimulus and a subsequent deviant stimulus (oddball). Because neural mechanisms underlying MMN and MMA remain unclear, there is a controversy as to whether MMN and MMA arise solely from stimulus‐specific adaptation (SSA), in which the response to a stimulus cumulatively attenuates with its repetitive presentation. To address this issue, we used electrocorticography and the auditory roving‐oddball paradigm in two awake macaque monkeys. We examined the effect of stimulus repetition number on MMA and on responses to repeated stimuli and oddballs across the cerebral cortex in the time–frequency domain. As the repetition number increased, MMA spread across the temporal, frontal and parietal cortices, and each electrode yielded a larger MMA. Surprisingly, this increment in MMA largely depended on response augmentation to the oddball rather than on SSA to the repeated stimulus. Following sufficient repetition, the oddball evoked a spectral power increment in some electrodes on the frontal cortex that had shown no power increase to the stimuli with less or no preceding repetition. We thereby revealed that repetitive presentation of one stimulus not only leads to SSA but also facilitates the cortical response to oddballs involving a wide range of cortical regions. This facilitative effect might underlie the generation of MMN‐like scalp potentials in macaques that potentially shares similar neural mechanisms with MMN in humans. John Wiley and Sons Inc. 2016-02 2016-01-06 /pmc/articles/PMC5064748/ /pubmed/26613160 http://dx.doi.org/10.1111/ejn.13136 Text en © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Cognitive Neuroscience Takaura, Kana Fujii, Naotaka Facilitative effect of repetitive presentation of one stimulus on cortical responses to other stimuli in macaque monkeys – a possible neural mechanism for mismatch negativity |
title | Facilitative effect of repetitive presentation of one stimulus on cortical responses to other stimuli in macaque monkeys – a possible neural mechanism for mismatch negativity |
title_full | Facilitative effect of repetitive presentation of one stimulus on cortical responses to other stimuli in macaque monkeys – a possible neural mechanism for mismatch negativity |
title_fullStr | Facilitative effect of repetitive presentation of one stimulus on cortical responses to other stimuli in macaque monkeys – a possible neural mechanism for mismatch negativity |
title_full_unstemmed | Facilitative effect of repetitive presentation of one stimulus on cortical responses to other stimuli in macaque monkeys – a possible neural mechanism for mismatch negativity |
title_short | Facilitative effect of repetitive presentation of one stimulus on cortical responses to other stimuli in macaque monkeys – a possible neural mechanism for mismatch negativity |
title_sort | facilitative effect of repetitive presentation of one stimulus on cortical responses to other stimuli in macaque monkeys – a possible neural mechanism for mismatch negativity |
topic | Cognitive Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064748/ https://www.ncbi.nlm.nih.gov/pubmed/26613160 http://dx.doi.org/10.1111/ejn.13136 |
work_keys_str_mv | AT takaurakana facilitativeeffectofrepetitivepresentationofonestimulusoncorticalresponsestootherstimuliinmacaquemonkeysapossibleneuralmechanismformismatchnegativity AT fujiinaotaka facilitativeeffectofrepetitivepresentationofonestimulusoncorticalresponsestootherstimuliinmacaquemonkeysapossibleneuralmechanismformismatchnegativity |