Cargando…
Impact of the Choice of Normalization Method on Molecular Cancer Class Discovery Using Nonnegative Matrix Factorization
Nonnegative Matrix Factorization (NMF) has proved to be an effective method for unsupervised clustering analysis of gene expression data. By the nonnegativity constraint, NMF provides a decomposition of the data matrix into two matrices that have been used for clustering analysis. However, the decom...
Autores principales: | Yang, Haixuan, Seoighe, Cathal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065197/ https://www.ncbi.nlm.nih.gov/pubmed/27741311 http://dx.doi.org/10.1371/journal.pone.0164880 |
Ejemplares similares
-
A flexible R package for nonnegative matrix factorization
por: Gaujoux, Renaud, et al.
Publicado: (2010) -
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Scenario Discovery Using Nonnegative Tensor Factorization
por: Bader, Brett W., et al.
Publicado: (2008) -
Nonnegative Matrix Factorization with Gaussian Process Priors
por: Schmidt, Mikkel N., et al.
Publicado: (2008) -
Reverse annealing for nonnegative/binary matrix factorization
por: Golden, John, et al.
Publicado: (2021)