Cargando…
In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm
Discovery of new adsorbent materials with a high CO(2) working capacity could help reduce CO(2) emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require sign...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065252/ https://www.ncbi.nlm.nih.gov/pubmed/27757420 http://dx.doi.org/10.1126/sciadv.1600909 |
_version_ | 1782460299774787584 |
---|---|
author | Chung, Yongchul G. Gómez-Gualdrón, Diego A. Li, Peng Leperi, Karson T. Deria, Pravas Zhang, Hongda Vermeulen, Nicolaas A. Stoddart, J. Fraser You, Fengqi Hupp, Joseph T. Farha, Omar K. Snurr, Randall Q. |
author_facet | Chung, Yongchul G. Gómez-Gualdrón, Diego A. Li, Peng Leperi, Karson T. Deria, Pravas Zhang, Hongda Vermeulen, Nicolaas A. Stoddart, J. Fraser You, Fengqi Hupp, Joseph T. Farha, Omar K. Snurr, Randall Q. |
author_sort | Chung, Yongchul G. |
collection | PubMed |
description | Discovery of new adsorbent materials with a high CO(2) working capacity could help reduce CO(2) emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require significant computational resources to explore the large space of possible materials. We report the in silico discovery of high-performing adsorbents for precombustion CO(2) capture by applying a genetic algorithm to efficiently search a large database of metal-organic frameworks (MOFs) for top candidates. High-performing MOFs identified from the in silico search were synthesized and activated and show a high CO(2) working capacity and a high CO(2)/H(2) selectivity. One of the synthesized MOFs shows a higher CO(2) working capacity than any MOF reported in the literature under the operating conditions investigated here. |
format | Online Article Text |
id | pubmed-5065252 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-50652522016-10-18 In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm Chung, Yongchul G. Gómez-Gualdrón, Diego A. Li, Peng Leperi, Karson T. Deria, Pravas Zhang, Hongda Vermeulen, Nicolaas A. Stoddart, J. Fraser You, Fengqi Hupp, Joseph T. Farha, Omar K. Snurr, Randall Q. Sci Adv Research Articles Discovery of new adsorbent materials with a high CO(2) working capacity could help reduce CO(2) emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require significant computational resources to explore the large space of possible materials. We report the in silico discovery of high-performing adsorbents for precombustion CO(2) capture by applying a genetic algorithm to efficiently search a large database of metal-organic frameworks (MOFs) for top candidates. High-performing MOFs identified from the in silico search were synthesized and activated and show a high CO(2) working capacity and a high CO(2)/H(2) selectivity. One of the synthesized MOFs shows a higher CO(2) working capacity than any MOF reported in the literature under the operating conditions investigated here. American Association for the Advancement of Science 2016-10-14 /pmc/articles/PMC5065252/ /pubmed/27757420 http://dx.doi.org/10.1126/sciadv.1600909 Text en Copyright © 2016, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Chung, Yongchul G. Gómez-Gualdrón, Diego A. Li, Peng Leperi, Karson T. Deria, Pravas Zhang, Hongda Vermeulen, Nicolaas A. Stoddart, J. Fraser You, Fengqi Hupp, Joseph T. Farha, Omar K. Snurr, Randall Q. In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm |
title | In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm |
title_full | In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm |
title_fullStr | In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm |
title_full_unstemmed | In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm |
title_short | In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm |
title_sort | in silico discovery of metal-organic frameworks for precombustion co(2) capture using a genetic algorithm |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065252/ https://www.ncbi.nlm.nih.gov/pubmed/27757420 http://dx.doi.org/10.1126/sciadv.1600909 |
work_keys_str_mv | AT chungyongchulg insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm AT gomezgualdrondiegoa insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm AT lipeng insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm AT leperikarsont insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm AT deriapravas insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm AT zhanghongda insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm AT vermeulennicolaasa insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm AT stoddartjfraser insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm AT youfengqi insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm AT huppjosepht insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm AT farhaomark insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm AT snurrrandallq insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm |