Cargando…

In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm

Discovery of new adsorbent materials with a high CO(2) working capacity could help reduce CO(2) emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require sign...

Descripción completa

Detalles Bibliográficos
Autores principales: Chung, Yongchul G., Gómez-Gualdrón, Diego A., Li, Peng, Leperi, Karson T., Deria, Pravas, Zhang, Hongda, Vermeulen, Nicolaas A., Stoddart, J. Fraser, You, Fengqi, Hupp, Joseph T., Farha, Omar K., Snurr, Randall Q.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065252/
https://www.ncbi.nlm.nih.gov/pubmed/27757420
http://dx.doi.org/10.1126/sciadv.1600909
_version_ 1782460299774787584
author Chung, Yongchul G.
Gómez-Gualdrón, Diego A.
Li, Peng
Leperi, Karson T.
Deria, Pravas
Zhang, Hongda
Vermeulen, Nicolaas A.
Stoddart, J. Fraser
You, Fengqi
Hupp, Joseph T.
Farha, Omar K.
Snurr, Randall Q.
author_facet Chung, Yongchul G.
Gómez-Gualdrón, Diego A.
Li, Peng
Leperi, Karson T.
Deria, Pravas
Zhang, Hongda
Vermeulen, Nicolaas A.
Stoddart, J. Fraser
You, Fengqi
Hupp, Joseph T.
Farha, Omar K.
Snurr, Randall Q.
author_sort Chung, Yongchul G.
collection PubMed
description Discovery of new adsorbent materials with a high CO(2) working capacity could help reduce CO(2) emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require significant computational resources to explore the large space of possible materials. We report the in silico discovery of high-performing adsorbents for precombustion CO(2) capture by applying a genetic algorithm to efficiently search a large database of metal-organic frameworks (MOFs) for top candidates. High-performing MOFs identified from the in silico search were synthesized and activated and show a high CO(2) working capacity and a high CO(2)/H(2) selectivity. One of the synthesized MOFs shows a higher CO(2) working capacity than any MOF reported in the literature under the operating conditions investigated here.
format Online
Article
Text
id pubmed-5065252
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-50652522016-10-18 In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm Chung, Yongchul G. Gómez-Gualdrón, Diego A. Li, Peng Leperi, Karson T. Deria, Pravas Zhang, Hongda Vermeulen, Nicolaas A. Stoddart, J. Fraser You, Fengqi Hupp, Joseph T. Farha, Omar K. Snurr, Randall Q. Sci Adv Research Articles Discovery of new adsorbent materials with a high CO(2) working capacity could help reduce CO(2) emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require significant computational resources to explore the large space of possible materials. We report the in silico discovery of high-performing adsorbents for precombustion CO(2) capture by applying a genetic algorithm to efficiently search a large database of metal-organic frameworks (MOFs) for top candidates. High-performing MOFs identified from the in silico search were synthesized and activated and show a high CO(2) working capacity and a high CO(2)/H(2) selectivity. One of the synthesized MOFs shows a higher CO(2) working capacity than any MOF reported in the literature under the operating conditions investigated here. American Association for the Advancement of Science 2016-10-14 /pmc/articles/PMC5065252/ /pubmed/27757420 http://dx.doi.org/10.1126/sciadv.1600909 Text en Copyright © 2016, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Chung, Yongchul G.
Gómez-Gualdrón, Diego A.
Li, Peng
Leperi, Karson T.
Deria, Pravas
Zhang, Hongda
Vermeulen, Nicolaas A.
Stoddart, J. Fraser
You, Fengqi
Hupp, Joseph T.
Farha, Omar K.
Snurr, Randall Q.
In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm
title In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm
title_full In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm
title_fullStr In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm
title_full_unstemmed In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm
title_short In silico discovery of metal-organic frameworks for precombustion CO(2) capture using a genetic algorithm
title_sort in silico discovery of metal-organic frameworks for precombustion co(2) capture using a genetic algorithm
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065252/
https://www.ncbi.nlm.nih.gov/pubmed/27757420
http://dx.doi.org/10.1126/sciadv.1600909
work_keys_str_mv AT chungyongchulg insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm
AT gomezgualdrondiegoa insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm
AT lipeng insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm
AT leperikarsont insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm
AT deriapravas insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm
AT zhanghongda insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm
AT vermeulennicolaasa insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm
AT stoddartjfraser insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm
AT youfengqi insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm
AT huppjosepht insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm
AT farhaomark insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm
AT snurrrandallq insilicodiscoveryofmetalorganicframeworksforprecombustionco2captureusingageneticalgorithm