Cargando…
Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach
BACKGROUND: Sepsis is one of the leading causes of mortality in hospitalized patients. Despite this fact, a reliable means of predicting sepsis onset remains elusive. Early and accurate sepsis onset predictions could allow more aggressive and targeted therapy while maintaining antimicrobial stewards...
Autores principales: | Desautels, Thomas, Calvert, Jacob, Hoffman, Jana, Jay, Melissa, Kerem, Yaniv, Shieh, Lisa, Shimabukuro, David, Chettipally, Uli, Feldman, Mitchell D, Barton, Chris, Wales, David J, Das, Ritankar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065680/ https://www.ncbi.nlm.nih.gov/pubmed/27694098 http://dx.doi.org/10.2196/medinform.5909 |
Ejemplares similares
-
Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU
por: Mao, Qingqing, et al.
Publicado: (2018) -
Using Transfer Learning for Improved Mortality Prediction in a Data-Scarce Hospital Setting
por: Desautels, Thomas, et al.
Publicado: (2017) -
Using electronic health record collected clinical variables to predict medical intensive care unit mortality
por: Calvert, Jacob, et al.
Publicado: (2016) -
High-performance detection and early prediction of septic shock for alcohol-use disorder patients
por: Calvert, Jacob, et al.
Publicado: (2016) -
Prediction of Acute Kidney Injury With a Machine Learning Algorithm
Using Electronic Health Record Data
por: Mohamadlou, Hamid, et al.
Publicado: (2018)