Cargando…

University–industry R&D linkage metrics: validity and applicability in world university rankings

In September 2015 Thomson Reuters published its Ranking of Innovative Universities (RIU). Covering 100 large research-intensive universities worldwide, Stanford University came in first, MIT was second and Harvard in third position. But how meaningful is this outcome? In this paper we will take a cr...

Descripción completa

Detalles Bibliográficos
Autores principales: Tijssen, Robert J. W., Yegros-Yegros, Alfredo, Winnink, Jos J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065891/
https://www.ncbi.nlm.nih.gov/pubmed/27795591
http://dx.doi.org/10.1007/s11192-016-2098-8
Descripción
Sumario:In September 2015 Thomson Reuters published its Ranking of Innovative Universities (RIU). Covering 100 large research-intensive universities worldwide, Stanford University came in first, MIT was second and Harvard in third position. But how meaningful is this outcome? In this paper we will take a critical view from a methodological perspective. We focus our attention on the various types of metrics available, whether or not data redundancies are addressed, and if metrics should be assembled into a single composite overall score or not. We address these issues in some detail by emphasizing one metric in particular: university–industry co-authored publications (UICs). We compare the RIU with three variants of our own University–Industry R&D Linkage Index, which we derived from the bibliometric analysis of 750 research universities worldwide. Our findings highlight conceptual and methodological problems with UIC-based data, as well as computational weaknesses such university ranking systems. Avoiding choices between size-dependent or independent metrics, and between single-metrics and multi-metrics systems, we recommend an alternative ‘scoreboard’ approach: (1) without weighing systems of metrics and composite scores; (2) computational procedures and information sources are made more transparent; (3) size-dependent metrics are kept separate from size-independent metrics; (4) UIC metrics are selected according to the type of proximity relationship between universities and industry.