Cargando…
Motor Imagery Classification Using Mu and Beta Rhythms of EEG with Strong Uncorrelating Transform Based Complex Common Spatial Patterns
Recent studies have demonstrated the disassociation between the mu and beta rhythms of electroencephalogram (EEG) during motor imagery tasks. The proposed algorithm in this paper uses a fully data-driven multivariate empirical mode decomposition (MEMD) in order to obtain the mu and beta rhythms from...
Autores principales: | Kim, Youngjoo, Ryu, Jiwoo, Kim, Ko Keun, Took, Clive C., Mandic, Danilo P., Park, Cheolsoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066028/ https://www.ncbi.nlm.nih.gov/pubmed/27795702 http://dx.doi.org/10.1155/2016/1489692 |
Ejemplares similares
-
Correlation Assisted Strong Uncorrelating Transform Complex Common Spatial Patterns for Spatially Distant Channel Data
por: Kim, Youngjoo, et al.
Publicado: (2018) -
Effects of Motor Imagery Tasks on Brain Functional Networks Based on EEG Mu/Beta Rhythm
por: Yu, Hongli, et al.
Publicado: (2022) -
Mu and beta rhythm modulations in motor imagery related post-stroke EEG: a study under BCI framework for post-stroke rehabilitation
por: Shahid, Shahjahan, et al.
Publicado: (2010) -
Kurtosis-Based Blind Source Extraction of Complex Non-Circular Signals with Application in EEG Artifact Removal in Real-Time
por: Javidi, Soroush, et al.
Publicado: (2011) -
Synchronization by uncorrelated noise: interacting rhythms in interconnected oscillator networks
por: Meng, John Hongyu, et al.
Publicado: (2018)