Cargando…

Diamond photonics platform enabled by femtosecond laser writing

Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at...

Descripción completa

Detalles Bibliográficos
Autores principales: Sotillo, Belén, Bharadwaj, Vibhav, Hadden, J. P., Sakakura, Masaaki, Chiappini, Andrea, Fernandez, Toney Teddy, Longhi, Stefano, Jedrkiewicz, Ottavia, Shimotsuma, Yasuhiko, Criante, Luigino, Osellame, Roberto, Galzerano, Gianluca, Ferrari, Maurizio, Miura, Kiyotaka, Ramponi, Roberta, Barclay, Paul E., Eaton, Shane Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066270/
https://www.ncbi.nlm.nih.gov/pubmed/27748428
http://dx.doi.org/10.1038/srep35566
_version_ 1782460456741371904
author Sotillo, Belén
Bharadwaj, Vibhav
Hadden, J. P.
Sakakura, Masaaki
Chiappini, Andrea
Fernandez, Toney Teddy
Longhi, Stefano
Jedrkiewicz, Ottavia
Shimotsuma, Yasuhiko
Criante, Luigino
Osellame, Roberto
Galzerano, Gianluca
Ferrari, Maurizio
Miura, Kiyotaka
Ramponi, Roberta
Barclay, Paul E.
Eaton, Shane Michael
author_facet Sotillo, Belén
Bharadwaj, Vibhav
Hadden, J. P.
Sakakura, Masaaki
Chiappini, Andrea
Fernandez, Toney Teddy
Longhi, Stefano
Jedrkiewicz, Ottavia
Shimotsuma, Yasuhiko
Criante, Luigino
Osellame, Roberto
Galzerano, Gianluca
Ferrari, Maurizio
Miura, Kiyotaka
Ramponi, Roberta
Barclay, Paul E.
Eaton, Shane Michael
author_sort Sotillo, Belén
collection PubMed
description Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV’s states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, still lacking is an efficient photonic fabrication method for diamond akin to the photolithographic methods that have revolutionized silicon photonics. Here, we report the first demonstration of three dimensional buried optical waveguides in diamond, inscribed by focused femtosecond high repetition rate laser pulses. Within the waveguides, high quality NV properties are observed, making them promising for integrated magnetometer or quantum information systems on a diamond chip.
format Online
Article
Text
id pubmed-5066270
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50662702016-10-26 Diamond photonics platform enabled by femtosecond laser writing Sotillo, Belén Bharadwaj, Vibhav Hadden, J. P. Sakakura, Masaaki Chiappini, Andrea Fernandez, Toney Teddy Longhi, Stefano Jedrkiewicz, Ottavia Shimotsuma, Yasuhiko Criante, Luigino Osellame, Roberto Galzerano, Gianluca Ferrari, Maurizio Miura, Kiyotaka Ramponi, Roberta Barclay, Paul E. Eaton, Shane Michael Sci Rep Article Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV’s states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, still lacking is an efficient photonic fabrication method for diamond akin to the photolithographic methods that have revolutionized silicon photonics. Here, we report the first demonstration of three dimensional buried optical waveguides in diamond, inscribed by focused femtosecond high repetition rate laser pulses. Within the waveguides, high quality NV properties are observed, making them promising for integrated magnetometer or quantum information systems on a diamond chip. Nature Publishing Group 2016-10-17 /pmc/articles/PMC5066270/ /pubmed/27748428 http://dx.doi.org/10.1038/srep35566 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Sotillo, Belén
Bharadwaj, Vibhav
Hadden, J. P.
Sakakura, Masaaki
Chiappini, Andrea
Fernandez, Toney Teddy
Longhi, Stefano
Jedrkiewicz, Ottavia
Shimotsuma, Yasuhiko
Criante, Luigino
Osellame, Roberto
Galzerano, Gianluca
Ferrari, Maurizio
Miura, Kiyotaka
Ramponi, Roberta
Barclay, Paul E.
Eaton, Shane Michael
Diamond photonics platform enabled by femtosecond laser writing
title Diamond photonics platform enabled by femtosecond laser writing
title_full Diamond photonics platform enabled by femtosecond laser writing
title_fullStr Diamond photonics platform enabled by femtosecond laser writing
title_full_unstemmed Diamond photonics platform enabled by femtosecond laser writing
title_short Diamond photonics platform enabled by femtosecond laser writing
title_sort diamond photonics platform enabled by femtosecond laser writing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066270/
https://www.ncbi.nlm.nih.gov/pubmed/27748428
http://dx.doi.org/10.1038/srep35566
work_keys_str_mv AT sotillobelen diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT bharadwajvibhav diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT haddenjp diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT sakakuramasaaki diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT chiappiniandrea diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT fernandeztoneyteddy diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT longhistefano diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT jedrkiewiczottavia diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT shimotsumayasuhiko diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT crianteluigino diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT osellameroberto diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT galzeranogianluca diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT ferrarimaurizio diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT miurakiyotaka diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT ramponiroberta diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT barclaypaule diamondphotonicsplatformenabledbyfemtosecondlaserwriting
AT eatonshanemichael diamondphotonicsplatformenabledbyfemtosecondlaserwriting