Cargando…
Mixture EMOS model for calibrating ensemble forecasts of wind speed
Ensemble model output statistics (EMOS) is a statistical tool for post‐processing forecast ensembles of weather variables obtained from multiple runs of numerical weather prediction models in order to produce calibrated predictive probability density functions. The EMOS predictive probability densit...
Autores principales: | Baran, S., Lerch, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066685/ https://www.ncbi.nlm.nih.gov/pubmed/27812298 http://dx.doi.org/10.1002/env.2380 |
Ejemplares similares
-
A novel Bayesian ensembling model for wind power forecasting
por: Tang, Jingwei, et al.
Publicado: (2022) -
Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting
por: Men, Zhongxian, et al.
Publicado: (2014) -
Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting
por: Owens, M J, et al.
Publicado: (2014) -
RETRACTED ARTICLE: Forecasting of the wind speed under uncertainty
por: Aslam, Muhammad
Publicado: (2020) -
Retraction Note: Forecasting of the wind speed under uncertainty
por: Aslam, Muhammad
Publicado: (2022)