Cargando…
A Systematic Review of Methods for Handling Missing Variance Data in Meta-Analyses of Interventions in Type 2 Diabetes Mellitus
AIMS: Meta-analysis is of critical importance to decision makers to assess the comparative efficacy and safety of interventions and is integral to health technology assessment. A major problem for the meta-analysis of continuous outcomes is that associated variance data are not consistently reported...
Autores principales: | Batson, Sarah, Burton, Hannah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066955/ https://www.ncbi.nlm.nih.gov/pubmed/27749930 http://dx.doi.org/10.1371/journal.pone.0164827 |
Ejemplares similares
-
Comparison of Methods for Handling Missing Covariate Data
por: Johansson, Åsa M., et al.
Publicado: (2013) -
Methods to handle missing values and missing individuals
por: Bonander, Carl, et al.
Publicado: (2018) -
The prevention and handling of the missing data
por: Kang, Hyun
Publicado: (2013) -
Reporting and handling of missing data in predictive research for prevalent undiagnosed type 2 diabetes mellitus: a systematic review
por: Masconi, Katya L, et al.
Publicado: (2015) -
Enabling network inference methods to handle missing data and outliers
por: Folch-Fortuny, Abel, et al.
Publicado: (2015)