Cargando…
miR-203 facilitates tumor growth and metastasis by targeting fibroblast growth factor 2 in breast cancer
Breast cancer is the second leading cause of cancer mortality in women worldwide. Molecular therapy is needed to improve the outcome in patients with breast cancer. miR-203 participates in cancer cell proliferation, transformation, and apoptosis. This study showed that miR-203 was upregulated in bre...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067001/ https://www.ncbi.nlm.nih.gov/pubmed/27785068 http://dx.doi.org/10.2147/OTT.S108712 |
Sumario: | Breast cancer is the second leading cause of cancer mortality in women worldwide. Molecular therapy is needed to improve the outcome in patients with breast cancer. miR-203 participates in cancer cell proliferation, transformation, and apoptosis. This study showed that miR-203 was upregulated in breast cancer tissues and the MCF-7 cell line. miR-203 knockdown suppressed colony formation and transformation and also limited migration in MCF-7 cells. Fibroblast growth factor 2 (FGF2) was confirmed as a novel target of miR-203, as miR-203 knockdown induced an enhanced expression of FGF2 in MCF-7 cells. Moreover, FGF2 can reverse transforming growth factor-β signal pathway to suppress breast cancer. These findings provide new insights with potential therapeutic applications for the treatment of breast cancer. |
---|