Cargando…

Subarachnoid hemorrhage admissions retrospectively identified using a prediction model

OBJECTIVE: To create an accurate prediction model using variables collected in widely available health administrative data records to identify hospitalizations for primary subarachnoid hemorrhage (SAH). METHODS: A previously established complete cohort of consecutive primary SAH patients was combine...

Descripción completa

Detalles Bibliográficos
Autores principales: English, Shane W., McIntyre, Lauralyn, Fergusson, Dean, Turgeon, Alexis, dos Santos, Marlise P., Lum, Cheemun, Chassé, Michaël, Sinclair, John, Forster, Alan, van Walraven, Carl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067543/
https://www.ncbi.nlm.nih.gov/pubmed/27629096
http://dx.doi.org/10.1212/WNL.0000000000003204
Descripción
Sumario:OBJECTIVE: To create an accurate prediction model using variables collected in widely available health administrative data records to identify hospitalizations for primary subarachnoid hemorrhage (SAH). METHODS: A previously established complete cohort of consecutive primary SAH patients was combined with a random sample of control hospitalizations. Chi-square recursive partitioning was used to derive and internally validate a model to predict the probability that a patient had primary SAH (due to aneurysm or arteriovenous malformation) using health administrative data. RESULTS: A total of 10,322 hospitalizations with 631 having primary SAH (6.1%) were included in the study (5,122 derivation, 5,200 validation). In the validation patients, our recursive partitioning algorithm had a sensitivity of 96.5% (95% confidence interval [CI] 93.9–98.0), a specificity of 99.8% (95% CI 99.6–99.9), and a positive likelihood ratio of 483 (95% CI 254–879). In this population, patients meeting criteria for the algorithm had a probability of 45% of truly having primary SAH. CONCLUSIONS: Routinely collected health administrative data can be used to accurately identify hospitalized patients with a high probability of having a primary SAH. This algorithm may allow, upon validation, an easy and accurate method to create validated cohorts of primary SAH from either ruptured aneurysm or arteriovenous malformation.