Cargando…

The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon

Carbon‐based anodes are the key limiting factor in increasing the volumetric capacity of lithium‐ion batteries. Tin‐based composites are one alternative approach. Nanosized Sn–Fe–C anode materials are mechanochemically synthesized by reducing SnO with Ti in the presence of carbon. The optimum synthe...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Zhixin, Zhang, Ruibo, Ji, Dongsheng, Chernova, Natasha A., Karki, Khim, Sallis, Shawn, Piper, Louis, Whittingham, M. Stanley
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067663/
https://www.ncbi.nlm.nih.gov/pubmed/27812462
http://dx.doi.org/10.1002/advs.201500229
_version_ 1782460686493810688
author Dong, Zhixin
Zhang, Ruibo
Ji, Dongsheng
Chernova, Natasha A.
Karki, Khim
Sallis, Shawn
Piper, Louis
Whittingham, M. Stanley
author_facet Dong, Zhixin
Zhang, Ruibo
Ji, Dongsheng
Chernova, Natasha A.
Karki, Khim
Sallis, Shawn
Piper, Louis
Whittingham, M. Stanley
author_sort Dong, Zhixin
collection PubMed
description Carbon‐based anodes are the key limiting factor in increasing the volumetric capacity of lithium‐ion batteries. Tin‐based composites are one alternative approach. Nanosized Sn–Fe–C anode materials are mechanochemically synthesized by reducing SnO with Ti in the presence of carbon. The optimum synthesis conditions are found to be 1:0.25:10 for initial ratio of SnO, Ti, and graphite with a total grinding time of 8 h. This optimized composite shows excellent extended cycling at the C/10 rate, delivering a first charge capacity as high as 740 mAh g(−1) and 60% of which still remained after 170 cycles. The calculated volumetric capacity significantly exceeds that of carbon. It also exhibits excellent rate capability, delivering volumetric capacity higher than 1.6 Ah cc(−1) over 140 cycles at the 1 C rate.
format Online
Article
Text
id pubmed-5067663
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-50676632016-11-01 The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon Dong, Zhixin Zhang, Ruibo Ji, Dongsheng Chernova, Natasha A. Karki, Khim Sallis, Shawn Piper, Louis Whittingham, M. Stanley Adv Sci (Weinh) Full Papers Carbon‐based anodes are the key limiting factor in increasing the volumetric capacity of lithium‐ion batteries. Tin‐based composites are one alternative approach. Nanosized Sn–Fe–C anode materials are mechanochemically synthesized by reducing SnO with Ti in the presence of carbon. The optimum synthesis conditions are found to be 1:0.25:10 for initial ratio of SnO, Ti, and graphite with a total grinding time of 8 h. This optimized composite shows excellent extended cycling at the C/10 rate, delivering a first charge capacity as high as 740 mAh g(−1) and 60% of which still remained after 170 cycles. The calculated volumetric capacity significantly exceeds that of carbon. It also exhibits excellent rate capability, delivering volumetric capacity higher than 1.6 Ah cc(−1) over 140 cycles at the 1 C rate. John Wiley and Sons Inc. 2016-02-04 /pmc/articles/PMC5067663/ /pubmed/27812462 http://dx.doi.org/10.1002/advs.201500229 Text en © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Dong, Zhixin
Zhang, Ruibo
Ji, Dongsheng
Chernova, Natasha A.
Karki, Khim
Sallis, Shawn
Piper, Louis
Whittingham, M. Stanley
The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon
title The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon
title_full The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon
title_fullStr The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon
title_full_unstemmed The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon
title_short The Anode Challenge for Lithium‐Ion Batteries: A Mechanochemically Synthesized Sn–Fe–C Composite Anode Surpasses Graphitic Carbon
title_sort anode challenge for lithium‐ion batteries: a mechanochemically synthesized sn–fe–c composite anode surpasses graphitic carbon
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067663/
https://www.ncbi.nlm.nih.gov/pubmed/27812462
http://dx.doi.org/10.1002/advs.201500229
work_keys_str_mv AT dongzhixin theanodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT zhangruibo theanodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT jidongsheng theanodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT chernovanatashaa theanodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT karkikhim theanodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT sallisshawn theanodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT piperlouis theanodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT whittinghammstanley theanodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT dongzhixin anodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT zhangruibo anodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT jidongsheng anodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT chernovanatashaa anodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT karkikhim anodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT sallisshawn anodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT piperlouis anodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon
AT whittinghammstanley anodechallengeforlithiumionbatteriesamechanochemicallysynthesizedsnfeccompositeanodesurpassesgraphiticcarbon