Cargando…
The production of human glucocerebrosidase in glyco‐engineered Nicotiana benthamiana plants
For the production of therapeutic proteins in plants, the presence of β1,2‐xylose and core α1,3‐fucose on plants’ N‐glycan structures has been debated for their antigenic activity. In this study, RNA interference (RNAi) technology was used to down‐regulate the endogenous N‐acetylglucosaminyltransfer...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067671/ https://www.ncbi.nlm.nih.gov/pubmed/26868756 http://dx.doi.org/10.1111/pbi.12529 |
_version_ | 1782460688191455232 |
---|---|
author | Limkul, Juthamard Iizuka, Sayoko Sato, Yohei Misaki, Ryo Ohashi, Takao Ohashi, Toya Fujiyama, Kazuhito |
author_facet | Limkul, Juthamard Iizuka, Sayoko Sato, Yohei Misaki, Ryo Ohashi, Takao Ohashi, Toya Fujiyama, Kazuhito |
author_sort | Limkul, Juthamard |
collection | PubMed |
description | For the production of therapeutic proteins in plants, the presence of β1,2‐xylose and core α1,3‐fucose on plants’ N‐glycan structures has been debated for their antigenic activity. In this study, RNA interference (RNAi) technology was used to down‐regulate the endogenous N‐acetylglucosaminyltransferase I (GNTI) expression in Nicotiana benthamiana. One glyco‐engineered line (Nb GNTI‐RNAi) showed a strong reduction of plant‐specific N‐glycans, with the result that as much as 90.9% of the total N‐glycans were of high‐mannose type. Therefore, this Nb GNTI‐RNAi would be a promising system for the production of therapeutic glycoproteins in plants. The Nb GNTI‐RNAi plant was cross‐pollinated with transgenic N. benthamiana expressing human glucocerebrosidase (GC). The recombinant GC, which has been used for enzyme replacement therapy in patients with Gaucher's disease, requires terminal mannose for its therapeutic efficacy. The N‐glycan structures that were presented on all of the four occupied N‐glycosylation sites of recombinant GC in Nb GNTI‐RNAi plants (GC (gnt1)) showed that the majority (ranging from 73.3% up to 85.5%) of the N‐glycans had mannose‐type structures lacking potential immunogenic β1,2‐xylose and α1,3‐fucose epitopes. Moreover, GC (gnt1) could be taken up into the macrophage cells via mannose receptors, and distributed and taken up into the liver and spleen, the target organs in the treatment of Gaucher's disease. Notably, the Nb GNTI‐RNAi line, producing GC, was stable and the Nb GNTI‐RNAi plants were viable and did not show any obvious phenotype. Therefore, it would provide a robust tool for the production of GC with customized N‐glycan structures. |
format | Online Article Text |
id | pubmed-5067671 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50676712016-11-01 The production of human glucocerebrosidase in glyco‐engineered Nicotiana benthamiana plants Limkul, Juthamard Iizuka, Sayoko Sato, Yohei Misaki, Ryo Ohashi, Takao Ohashi, Toya Fujiyama, Kazuhito Plant Biotechnol J Research Articles For the production of therapeutic proteins in plants, the presence of β1,2‐xylose and core α1,3‐fucose on plants’ N‐glycan structures has been debated for their antigenic activity. In this study, RNA interference (RNAi) technology was used to down‐regulate the endogenous N‐acetylglucosaminyltransferase I (GNTI) expression in Nicotiana benthamiana. One glyco‐engineered line (Nb GNTI‐RNAi) showed a strong reduction of plant‐specific N‐glycans, with the result that as much as 90.9% of the total N‐glycans were of high‐mannose type. Therefore, this Nb GNTI‐RNAi would be a promising system for the production of therapeutic glycoproteins in plants. The Nb GNTI‐RNAi plant was cross‐pollinated with transgenic N. benthamiana expressing human glucocerebrosidase (GC). The recombinant GC, which has been used for enzyme replacement therapy in patients with Gaucher's disease, requires terminal mannose for its therapeutic efficacy. The N‐glycan structures that were presented on all of the four occupied N‐glycosylation sites of recombinant GC in Nb GNTI‐RNAi plants (GC (gnt1)) showed that the majority (ranging from 73.3% up to 85.5%) of the N‐glycans had mannose‐type structures lacking potential immunogenic β1,2‐xylose and α1,3‐fucose epitopes. Moreover, GC (gnt1) could be taken up into the macrophage cells via mannose receptors, and distributed and taken up into the liver and spleen, the target organs in the treatment of Gaucher's disease. Notably, the Nb GNTI‐RNAi line, producing GC, was stable and the Nb GNTI‐RNAi plants were viable and did not show any obvious phenotype. Therefore, it would provide a robust tool for the production of GC with customized N‐glycan structures. John Wiley and Sons Inc. 2016-02-12 2016-08 /pmc/articles/PMC5067671/ /pubmed/26868756 http://dx.doi.org/10.1111/pbi.12529 Text en © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Limkul, Juthamard Iizuka, Sayoko Sato, Yohei Misaki, Ryo Ohashi, Takao Ohashi, Toya Fujiyama, Kazuhito The production of human glucocerebrosidase in glyco‐engineered Nicotiana benthamiana plants |
title | The production of human glucocerebrosidase in glyco‐engineered Nicotiana benthamiana plants |
title_full | The production of human glucocerebrosidase in glyco‐engineered Nicotiana benthamiana plants |
title_fullStr | The production of human glucocerebrosidase in glyco‐engineered Nicotiana benthamiana plants |
title_full_unstemmed | The production of human glucocerebrosidase in glyco‐engineered Nicotiana benthamiana plants |
title_short | The production of human glucocerebrosidase in glyco‐engineered Nicotiana benthamiana plants |
title_sort | production of human glucocerebrosidase in glyco‐engineered nicotiana benthamiana plants |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5067671/ https://www.ncbi.nlm.nih.gov/pubmed/26868756 http://dx.doi.org/10.1111/pbi.12529 |
work_keys_str_mv | AT limkuljuthamard theproductionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT iizukasayoko theproductionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT satoyohei theproductionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT misakiryo theproductionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT ohashitakao theproductionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT ohashitoya theproductionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT fujiyamakazuhito theproductionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT limkuljuthamard productionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT iizukasayoko productionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT satoyohei productionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT misakiryo productionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT ohashitakao productionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT ohashitoya productionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants AT fujiyamakazuhito productionofhumanglucocerebrosidaseinglycoengineerednicotianabenthamianaplants |