Cargando…
Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: the case of lung cancer in Long Island, New York
BACKGROUND: Complete Spatial Randomness (CSR) is the null hypothesis employed by many statistical tests for spatial pattern, such as local cluster or boundary analysis. CSR is however not a relevant null hypothesis for highly complex and organized systems such as those encountered in the environment...
Autores principales: | Goovaerts, Pierre, Jacquez, Geoffrey M |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC506783/ https://www.ncbi.nlm.nih.gov/pubmed/15272930 http://dx.doi.org/10.1186/1476-072X-3-14 |
Ejemplares similares
-
Geostatistical analysis of disease data: accounting for spatial support and population density in the isopleth mapping of cancer mortality risk using area-to-point Poisson kriging
por: Goovaerts, Pierre
Publicado: (2006) -
Geostatistical analysis of disease data: visualization and propagation of spatial uncertainty in cancer mortality risk using Poisson kriging and p-field simulation
por: Goovaerts, Pierre
Publicado: (2006) -
Case-control geographic clustering for residential histories accounting for risk
factors and covariates
por: Jacquez, Geoffrey M, et al.
Publicado: (2006) -
Geostatistical analysis of disease data: estimation of cancer mortality risk from empirical frequencies using Poisson kriging
por: Goovaerts, Pierre
Publicado: (2005) -
A spatially filtered multilevel model to account for spatial dependency: application
to self-rated health status in South Korea
por: Park, Yoo Min, et al.
Publicado: (2014)