Cargando…

Neuroplasticity-dependent and -independent mechanisms of chronic deep brain stimulation in stressed rats

Chronic ventromedial prefrontal cortex (vmPFC) deep brain stimulation (DBS) improves depressive-like behaviour in rats via serotonergic and neurotrophic-related mechanisms. We hypothesise that, in addition to these substrates, DBS-induced increases in hippocampal neurogenesis may also be involved. O...

Descripción completa

Detalles Bibliográficos
Autores principales: Bambico, F R, Bregman, T, Diwan, M, Li, J, Darvish-Ghane, S, Li, Z, Laver, B, Amorim, B O, Covolan, L, Nobrega, J N, Hamani, C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5068759/
https://www.ncbi.nlm.nih.gov/pubmed/26529427
http://dx.doi.org/10.1038/tp.2015.166
Descripción
Sumario:Chronic ventromedial prefrontal cortex (vmPFC) deep brain stimulation (DBS) improves depressive-like behaviour in rats via serotonergic and neurotrophic-related mechanisms. We hypothesise that, in addition to these substrates, DBS-induced increases in hippocampal neurogenesis may also be involved. Our results show that stress-induced behavioural deficits in the sucrose preference test, forced swim test, novelty-suppressed feeding test (NSFT) and elevated plus maze were countered by chronic vmPFC DBS. In addition, stressed rats receiving stimulation had significant increases in hippocampal neurogenesis, PFC and hippocampal brain-derived neurotrophic factor levels. To block neurogenesis, stressed animals given DBS were injected with temozolomide. Such treatment reversed the anxiolytic-like effect of stimulation in the NSFT without significantly affecting performance in other behavioural tests. Taken together, our findings suggest that neuroplastic changes, including neurogenesis, may be involved in specific anxiolytic effects of DBS without affecting its general antidepressant-like response.