Cargando…
Cross-Validation Without Doing Cross-Validation in Genome-Enabled Prediction
Cross-validation of methods is an essential component of genome-enabled prediction of complex traits. We develop formulae for computing the predictions that would be obtained when one or several cases are removed in the training process, to become members of testing sets, but by running the model us...
Autores principales: | Gianola, Daniel, Schön, Chris-Carolin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5068934/ https://www.ncbi.nlm.nih.gov/pubmed/27489209 http://dx.doi.org/10.1534/g3.116.033381 |
Ejemplares similares
-
Bayesian Genomic-Enabled Prediction as an Inverse Problem
por: Cuevas, Jaime, et al.
Publicado: (2014) -
Enhancing Genome-Enabled Prediction by Bagging Genomic BLUP
por: Gianola, Daniel, et al.
Publicado: (2014) -
Pitfalls and Remedies for Cross Validation with Multi-trait Genomic Prediction Methods
por: Runcie, Daniel, et al.
Publicado: (2019) -
Accuracy of Genome-Enabled Prediction in a Dairy Cattle Population using Different Cross-Validation Layouts
por: Pérez-Cabal, M. Angeles, et al.
Publicado: (2012) -
Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression
por: Montesinos-López, Osval A., et al.
Publicado: (2015)