Cargando…
Prediction of compressibility parameters of the soils using artificial neural network
The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time...
Autores principales: | Kurnaz, T. Fikret, Dagdeviren, Ugur, Yildiz, Murat, Ozkan, Ozhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069214/ https://www.ncbi.nlm.nih.gov/pubmed/27803846 http://dx.doi.org/10.1186/s40064-016-3494-5 |
Ejemplares similares
-
Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks
por: Lai, Jinxing, et al.
Publicado: (2016) -
Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network
por: Amar, Mouhamadou, et al.
Publicado: (2022) -
Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network
por: Bu, Liangtao, et al.
Publicado: (2021) -
Learned Prediction of Compressive Strength of GGBFS Concrete Using Hybrid Artificial Neural Network Models
por: Han, In-Ji, et al.
Publicado: (2019) -
Prediction of Compressive Strength of Biomass–Humic Acid Limonite Pellets Using Artificial Neural Network Model
por: Yan, Haoli, et al.
Publicado: (2023)