Cargando…
A Semi-Physiological Population Model to Quantify the Effect of Hematocrit on Everolimus Pharmacokinetics and Pharmacodynamics in Cancer Patients
INTRODUCTION AND OBJECTIVE: Everolimus (a drug from the class of mammalian target of rapamycin [mTOR] inhibitors) is associated with frequent toxicity-related dose reductions. Everolimus accumulates in erythrocytes, but the extent to which hematocrit affects everolimus plasma pharmacokinetics and ph...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069307/ https://www.ncbi.nlm.nih.gov/pubmed/27299325 http://dx.doi.org/10.1007/s40262-016-0414-3 |
_version_ | 1782460907710840832 |
---|---|
author | van Erp, Nielka P. van Herpen, Carla M. de Wit, Djoeke Willemsen, Annelieke Burger, David M. Huitema, Alwin D. R. Kapiteijn, Ellen ter Heine, Rob |
author_facet | van Erp, Nielka P. van Herpen, Carla M. de Wit, Djoeke Willemsen, Annelieke Burger, David M. Huitema, Alwin D. R. Kapiteijn, Ellen ter Heine, Rob |
author_sort | van Erp, Nielka P. |
collection | PubMed |
description | INTRODUCTION AND OBJECTIVE: Everolimus (a drug from the class of mammalian target of rapamycin [mTOR] inhibitors) is associated with frequent toxicity-related dose reductions. Everolimus accumulates in erythrocytes, but the extent to which hematocrit affects everolimus plasma pharmacokinetics and pharmacodynamics is unknown. We aimed to investigate the everolimus pharmacokinetics/pharmacodynamics and the influence of hematocrit in cancer patients. METHODS: A semi-physiological pharmacokinetic model for everolimus was developed from pharmacokinetic data from 73 patients by non-linear mixed-effects modeling. Using a simulation study with a known pharmacodynamic model describing S6K1 (a downstream mTOR effector) inhibition, we investigated the impact of hematocrit. RESULTS: The apparent volume of distribution of the central and peripheral compartment were estimated to be 207 L with a relative standard error (RSE) of 5.0 % and 485 L (RSE 4.2 %), respectively, with an inter-compartmental clearance of 72.1 L/h (RSE 3.2 %). The apparent intrinsic clearance was 198 L/h (RSE 4.3 %). A decrease in hematocrit from 45 % to 20 % resulted in a predicted reduction in whole-blood exposure of ~50 %, but everolimus plasma pharmacokinetics and pharmacodynamics were not affected. The predicted S6K1 inhibition was at a plateau level in the approved dose of 10 mg once daily. CONCLUSIONS: A population pharmacokinetic model was developed for everolimus in cancer patients. Hematocrit influenced whole-blood pharmacokinetics, but not plasma pharmacokinetics or pharmacodynamics. Everolimus whole-blood concentrations should always be corrected for hematocrit. Since predicted mTOR inhibition was at a plateau level in the approved dose, dose reductions may have only a limited impact on mTOR inhibition. |
format | Online Article Text |
id | pubmed-5069307 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-50693072016-11-02 A Semi-Physiological Population Model to Quantify the Effect of Hematocrit on Everolimus Pharmacokinetics and Pharmacodynamics in Cancer Patients van Erp, Nielka P. van Herpen, Carla M. de Wit, Djoeke Willemsen, Annelieke Burger, David M. Huitema, Alwin D. R. Kapiteijn, Ellen ter Heine, Rob Clin Pharmacokinet Original Research Article INTRODUCTION AND OBJECTIVE: Everolimus (a drug from the class of mammalian target of rapamycin [mTOR] inhibitors) is associated with frequent toxicity-related dose reductions. Everolimus accumulates in erythrocytes, but the extent to which hematocrit affects everolimus plasma pharmacokinetics and pharmacodynamics is unknown. We aimed to investigate the everolimus pharmacokinetics/pharmacodynamics and the influence of hematocrit in cancer patients. METHODS: A semi-physiological pharmacokinetic model for everolimus was developed from pharmacokinetic data from 73 patients by non-linear mixed-effects modeling. Using a simulation study with a known pharmacodynamic model describing S6K1 (a downstream mTOR effector) inhibition, we investigated the impact of hematocrit. RESULTS: The apparent volume of distribution of the central and peripheral compartment were estimated to be 207 L with a relative standard error (RSE) of 5.0 % and 485 L (RSE 4.2 %), respectively, with an inter-compartmental clearance of 72.1 L/h (RSE 3.2 %). The apparent intrinsic clearance was 198 L/h (RSE 4.3 %). A decrease in hematocrit from 45 % to 20 % resulted in a predicted reduction in whole-blood exposure of ~50 %, but everolimus plasma pharmacokinetics and pharmacodynamics were not affected. The predicted S6K1 inhibition was at a plateau level in the approved dose of 10 mg once daily. CONCLUSIONS: A population pharmacokinetic model was developed for everolimus in cancer patients. Hematocrit influenced whole-blood pharmacokinetics, but not plasma pharmacokinetics or pharmacodynamics. Everolimus whole-blood concentrations should always be corrected for hematocrit. Since predicted mTOR inhibition was at a plateau level in the approved dose, dose reductions may have only a limited impact on mTOR inhibition. Springer International Publishing 2016-06-14 2016 /pmc/articles/PMC5069307/ /pubmed/27299325 http://dx.doi.org/10.1007/s40262-016-0414-3 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Research Article van Erp, Nielka P. van Herpen, Carla M. de Wit, Djoeke Willemsen, Annelieke Burger, David M. Huitema, Alwin D. R. Kapiteijn, Ellen ter Heine, Rob A Semi-Physiological Population Model to Quantify the Effect of Hematocrit on Everolimus Pharmacokinetics and Pharmacodynamics in Cancer Patients |
title | A Semi-Physiological Population Model to Quantify the Effect of Hematocrit on Everolimus Pharmacokinetics and Pharmacodynamics in Cancer Patients |
title_full | A Semi-Physiological Population Model to Quantify the Effect of Hematocrit on Everolimus Pharmacokinetics and Pharmacodynamics in Cancer Patients |
title_fullStr | A Semi-Physiological Population Model to Quantify the Effect of Hematocrit on Everolimus Pharmacokinetics and Pharmacodynamics in Cancer Patients |
title_full_unstemmed | A Semi-Physiological Population Model to Quantify the Effect of Hematocrit on Everolimus Pharmacokinetics and Pharmacodynamics in Cancer Patients |
title_short | A Semi-Physiological Population Model to Quantify the Effect of Hematocrit on Everolimus Pharmacokinetics and Pharmacodynamics in Cancer Patients |
title_sort | semi-physiological population model to quantify the effect of hematocrit on everolimus pharmacokinetics and pharmacodynamics in cancer patients |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069307/ https://www.ncbi.nlm.nih.gov/pubmed/27299325 http://dx.doi.org/10.1007/s40262-016-0414-3 |
work_keys_str_mv | AT vanerpnielkap asemiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT vanherpencarlam asemiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT dewitdjoeke asemiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT willemsenannelieke asemiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT burgerdavidm asemiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT huitemaalwindr asemiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT kapiteijnellen asemiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT terheinerob asemiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT vanerpnielkap semiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT vanherpencarlam semiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT dewitdjoeke semiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT willemsenannelieke semiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT burgerdavidm semiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT huitemaalwindr semiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT kapiteijnellen semiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients AT terheinerob semiphysiologicalpopulationmodeltoquantifytheeffectofhematocritoneverolimuspharmacokineticsandpharmacodynamicsincancerpatients |