Cargando…

Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from Populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice

In Arabidopsis thaliana and Oryza sativa, the cytochrome P450 (CYP) 714 protein family represents a unique group of CYP monooxygenase, which functions as a shoot‐specific regulator in plant development through gibberellin deactivation. Here, we report the functional characterizations of PtCYP714A3,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Cuiting, Yang, Yang, Wang, Haihai, Ran, Xiaojuan, Li, Bei, Zhang, Jiantao, Zhang, Hongxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069455/
https://www.ncbi.nlm.nih.gov/pubmed/26970512
http://dx.doi.org/10.1111/pbi.12544
Descripción
Sumario:In Arabidopsis thaliana and Oryza sativa, the cytochrome P450 (CYP) 714 protein family represents a unique group of CYP monooxygenase, which functions as a shoot‐specific regulator in plant development through gibberellin deactivation. Here, we report the functional characterizations of PtCYP714A3, an OsCYP714D1/Eui homologue from Populus trichocarpa. PtCYP714A3 was ubiquitously expressed with the highest transcript level in cambium–phloem tissues, and was greatly induced by salt and osmotic stress in poplar. Subcellular localization analyses indicated that PtCYP714A3‐YFP fusion protein was targeted to endoplasmic reticulum (ER). Expression of PtCYP714A3 in the rice eui mutant could rescue its excessive‐shoot‐growth phenotype. Ectopic expression of PtCYP714A3 in rice led to semi‐dwarfed phenotype with promoted tillering and reduced seed size. Transgenic lines which showed significant expression of PtCYP714A3 also accumulated lower GA level than did the wild‐type (WT) plants. The expression of some GA biosynthesis genes was significantly suppressed in these transgenic plants. Furthermore, transgenic rice plants exhibited enhanced tolerance to salt and maintained more Na(+) in both shoot and root tissues under salinity stress. All these results not only suggest a crucial role of PtCYP714A3 in shoot responses to salt toxicity in rice, but also provide a molecular basis for genetic engineering of salt‐tolerant crops.