Cargando…
Controllable Encapsulation of “Clean” Metal Clusters within MOFs through Kinetic Modulation: Towards Advanced Heterogeneous Nanocatalysts
Surfactant‐free tiny Pt clusters were successfully encapsulated within MOFs with controllable size and spatial distribution by a novel kinetically modulated one‐step strategy. Our synthesis relies on the rational manipulation of the reduction rate of Pt ions and/or the growth rate of MOFs by using H...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069584/ https://www.ncbi.nlm.nih.gov/pubmed/26970412 http://dx.doi.org/10.1002/anie.201511009 |
Sumario: | Surfactant‐free tiny Pt clusters were successfully encapsulated within MOFs with controllable size and spatial distribution by a novel kinetically modulated one‐step strategy. Our synthesis relies on the rational manipulation of the reduction rate of Pt ions and/or the growth rate of MOFs by using H(2) as assistant reducing agent and/or acetic acid as MOF‐formation modulator. The as‐prepared Pt@MOF core–shell composites exhibited exceedingly high activity and excellent selectivity in the oxidation of alcohols as a result of the ultrafine “clean” Pt clusters, as well as interesting molecular‐sieving effects derived from the outer platinum‐free MOF shell. |
---|