Cargando…

Is the Evolution of Salmonella enterica subsp. enterica Linked to Restriction-Modification Systems?

Salmonella enterica subsp. enterica bacteria are highly diverse foodborne pathogens that are subdivided into more than 1,500 serovars. The diversity is believed to result from mutational evolution, as well as intra- and interspecies recombination that potentially could be influenced by restriction-m...

Descripción completa

Detalles Bibliográficos
Autores principales: Roer, Louise, Hendriksen, Rene S., Leekitcharoenphon, Pimlapas, Lukjancenko, Oksana, Kaas, Rolf Sommer, Hasman, Henrik, Aarestrup, Frank M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069764/
https://www.ncbi.nlm.nih.gov/pubmed/27822532
http://dx.doi.org/10.1128/mSystems.00009-16
_version_ 1782460997854822400
author Roer, Louise
Hendriksen, Rene S.
Leekitcharoenphon, Pimlapas
Lukjancenko, Oksana
Kaas, Rolf Sommer
Hasman, Henrik
Aarestrup, Frank M.
author_facet Roer, Louise
Hendriksen, Rene S.
Leekitcharoenphon, Pimlapas
Lukjancenko, Oksana
Kaas, Rolf Sommer
Hasman, Henrik
Aarestrup, Frank M.
author_sort Roer, Louise
collection PubMed
description Salmonella enterica subsp. enterica bacteria are highly diverse foodborne pathogens that are subdivided into more than 1,500 serovars. The diversity is believed to result from mutational evolution, as well as intra- and interspecies recombination that potentially could be influenced by restriction-modification (RM) systems. The aim of this study was to investigate whether RM systems were linked to the evolution of Salmonella enterica subsp. enterica. The study included 221 Salmonella enterica genomes, of which 68 were de novo sequenced and 153 were public available genomes from ENA. The data set covered 97 different serovars of Salmonella enterica subsp. enterica and an additional five genomes from four other Salmonella subspecies as an outgroup for constructing the phylogenetic trees. The phylogenetic trees were constructed based on multiple alignment of core genes, as well as the presence or absence of pangenes. The topology of the trees was compared to the presence of RM systems, antimicrobial resistance (AMR) genes, Salmonella pathogenicity islands (SPIs), and plasmid replicons. We did not observe any correlation between evolution and the RM systems in S. enterica subsp. enterica. However, sublineage correlations and serovar-specific patterns were observed. Additionally, we conclude that plasmid replicons, SPIs, and AMR were all better correlated to serovars than to RM systems. This study suggests a limited influence of RM systems on the evolution of Salmonella enterica subsp. enterica, which could be due to the conjugational mode of horizontal gene transfer in Salmonella. Thus, we conclude that other factors must be involved in shaping the evolution of bacteria. IMPORTANCE The evolution of bacterial pathogens, their plasticity and ability to rapidly change and adapt to new surroundings are crucial for understanding the epidemiology and public health. With the application of genomics, it became clear that horizontal gene transfer played a key role in evolution. To understand the evolution and diversification of pathogens, we need to understand the processes that drive the horizontal gene transfer. Restriction-modification systems are thought to cause rearrangements within the chromosome, as well as act as a barrier to horizontal gene transfer. However, here we show that the correlation between restriction-modification systems and evolution in other bacterial species does not apply to Salmonella enterica subsp. enterica. In summary, from this work, we conclude that other mechanisms might be involved in controlling and shaping the evolution of Salmonella enterica subsp. enterica.
format Online
Article
Text
id pubmed-5069764
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-50697642016-11-07 Is the Evolution of Salmonella enterica subsp. enterica Linked to Restriction-Modification Systems? Roer, Louise Hendriksen, Rene S. Leekitcharoenphon, Pimlapas Lukjancenko, Oksana Kaas, Rolf Sommer Hasman, Henrik Aarestrup, Frank M. mSystems Research Article Salmonella enterica subsp. enterica bacteria are highly diverse foodborne pathogens that are subdivided into more than 1,500 serovars. The diversity is believed to result from mutational evolution, as well as intra- and interspecies recombination that potentially could be influenced by restriction-modification (RM) systems. The aim of this study was to investigate whether RM systems were linked to the evolution of Salmonella enterica subsp. enterica. The study included 221 Salmonella enterica genomes, of which 68 were de novo sequenced and 153 were public available genomes from ENA. The data set covered 97 different serovars of Salmonella enterica subsp. enterica and an additional five genomes from four other Salmonella subspecies as an outgroup for constructing the phylogenetic trees. The phylogenetic trees were constructed based on multiple alignment of core genes, as well as the presence or absence of pangenes. The topology of the trees was compared to the presence of RM systems, antimicrobial resistance (AMR) genes, Salmonella pathogenicity islands (SPIs), and plasmid replicons. We did not observe any correlation between evolution and the RM systems in S. enterica subsp. enterica. However, sublineage correlations and serovar-specific patterns were observed. Additionally, we conclude that plasmid replicons, SPIs, and AMR were all better correlated to serovars than to RM systems. This study suggests a limited influence of RM systems on the evolution of Salmonella enterica subsp. enterica, which could be due to the conjugational mode of horizontal gene transfer in Salmonella. Thus, we conclude that other factors must be involved in shaping the evolution of bacteria. IMPORTANCE The evolution of bacterial pathogens, their plasticity and ability to rapidly change and adapt to new surroundings are crucial for understanding the epidemiology and public health. With the application of genomics, it became clear that horizontal gene transfer played a key role in evolution. To understand the evolution and diversification of pathogens, we need to understand the processes that drive the horizontal gene transfer. Restriction-modification systems are thought to cause rearrangements within the chromosome, as well as act as a barrier to horizontal gene transfer. However, here we show that the correlation between restriction-modification systems and evolution in other bacterial species does not apply to Salmonella enterica subsp. enterica. In summary, from this work, we conclude that other mechanisms might be involved in controlling and shaping the evolution of Salmonella enterica subsp. enterica. American Society for Microbiology 2016-06-21 /pmc/articles/PMC5069764/ /pubmed/27822532 http://dx.doi.org/10.1128/mSystems.00009-16 Text en Copyright © 2016 Roer et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Roer, Louise
Hendriksen, Rene S.
Leekitcharoenphon, Pimlapas
Lukjancenko, Oksana
Kaas, Rolf Sommer
Hasman, Henrik
Aarestrup, Frank M.
Is the Evolution of Salmonella enterica subsp. enterica Linked to Restriction-Modification Systems?
title Is the Evolution of Salmonella enterica subsp. enterica Linked to Restriction-Modification Systems?
title_full Is the Evolution of Salmonella enterica subsp. enterica Linked to Restriction-Modification Systems?
title_fullStr Is the Evolution of Salmonella enterica subsp. enterica Linked to Restriction-Modification Systems?
title_full_unstemmed Is the Evolution of Salmonella enterica subsp. enterica Linked to Restriction-Modification Systems?
title_short Is the Evolution of Salmonella enterica subsp. enterica Linked to Restriction-Modification Systems?
title_sort is the evolution of salmonella enterica subsp. enterica linked to restriction-modification systems?
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069764/
https://www.ncbi.nlm.nih.gov/pubmed/27822532
http://dx.doi.org/10.1128/mSystems.00009-16
work_keys_str_mv AT roerlouise istheevolutionofsalmonellaentericasubspentericalinkedtorestrictionmodificationsystems
AT hendriksenrenes istheevolutionofsalmonellaentericasubspentericalinkedtorestrictionmodificationsystems
AT leekitcharoenphonpimlapas istheevolutionofsalmonellaentericasubspentericalinkedtorestrictionmodificationsystems
AT lukjancenkooksana istheevolutionofsalmonellaentericasubspentericalinkedtorestrictionmodificationsystems
AT kaasrolfsommer istheevolutionofsalmonellaentericasubspentericalinkedtorestrictionmodificationsystems
AT hasmanhenrik istheevolutionofsalmonellaentericasubspentericalinkedtorestrictionmodificationsystems
AT aarestrupfrankm istheevolutionofsalmonellaentericasubspentericalinkedtorestrictionmodificationsystems