Cargando…
Further structure–activity relationships study of substituted dithiolethiones as glutathione-inducing neuroprotective agents
BACKGROUND: Parkinson’s disease is a neurodegenerative disorder associated with oxidative stress and glutathione depletion. The induction of cellular glutathione levels by exogenous molecules is a promising neuroprotective approach to limit the oxidative damage that characterizes Parkinson’s disease...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070379/ https://www.ncbi.nlm.nih.gov/pubmed/27812368 http://dx.doi.org/10.1186/s13065-016-0210-z |
Sumario: | BACKGROUND: Parkinson’s disease is a neurodegenerative disorder associated with oxidative stress and glutathione depletion. The induction of cellular glutathione levels by exogenous molecules is a promising neuroprotective approach to limit the oxidative damage that characterizes Parkinson’s disease pathophysiology. Dithiolethiones, a class of sulfur-containing heterocyclic molecules, are known to increase cellular levels of glutathione; however, limited information is available regarding the influence of dithiolethione structure on activity. Herein, we report the design, synthesis, and pharmacological evaluation of a further series of dithiolethiones in the SH-SY5Y neuroblastoma cell line. RESULTS: Our structure–activity relationships data show that dithiolethione electronic properties, given as Hammett σ(p) constants, influence glutathione induction activity and compound toxicity. The most active glutathione inducer identified, 6a, dose-dependently protected cells from 6-hydroxydopamine toxicity. Furthermore, the protective effects of 6a were abrogated by the inhibitor of glutathione synthesis, buthionine sulfoximine, confirming the importance of glutathione in the protective activities of 6a. CONCLUSIONS: The results of this study further delineate the relationship between dithiolethione chemical structure and glutathione induction. The neuroprotective properties of analog 6a suggest a role for dithiolethiones as potential antiparkinsonian agents. |
---|