Cargando…

Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin

Recent research suggests that the basement membrane at the dermal-epidermal junction of the skin plays an important role in maintaining a healthy epidermis and dermis, and repeated damage to the skin can destabilize the skin and accelerate the aging process. Skin-equivalent models are suitable for s...

Descripción completa

Detalles Bibliográficos
Autor principal: Tsunenaga, Makoto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Science Publishers 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070419/
https://www.ncbi.nlm.nih.gov/pubmed/27853671
http://dx.doi.org/10.2174/2211542005666160725154356
_version_ 1782461143563894784
author Tsunenaga, Makoto
author_facet Tsunenaga, Makoto
author_sort Tsunenaga, Makoto
collection PubMed
description Recent research suggests that the basement membrane at the dermal-epidermal junction of the skin plays an important role in maintaining a healthy epidermis and dermis, and repeated damage to the skin can destabilize the skin and accelerate the aging process. Skin-equivalent models are suitable for studying the reconstruction of the basement membrane and its contribution to epidermal homeostasis because they lack the basement membrane and show abnormal expression of epidermal differentiation markers. By using these models, it has been shown that reconstruction of the basement membrane is enhanced not only by supplying basement membrane components, but also by inhibiting proteinases such as urokinase and matrix metalloproteinase. Although matrix metalloproteinase inhibitors assist in the reconstruction of the basement membrane structure, their action is not sufficient to promote its functional recovery. However, heparanase inhibitors stabilize the heparan sulfate chains of perlecan (a heparan sulfate proteoglycan) and promote the regulation of heparan sulfate binding growth factors in the basement membrane. Heparan sulfate promotes effective protein-protein interactions, thereby facilitating the assembly of type VII collagen anchoring fibrils and elastin-associated microfibrils. Using both matrix metalloproteinase inhibitors and heparanase inhibitors, the basement membrane in a skin-equivalent model comes close to recapitulating the structure and function of an in vivo basement membrane. Therefore, by using an appropriate dermis model and suitable protease inhibitors, it may be possible to produce skin-equivalent models that are more similar to natural skin
format Online
Article
Text
id pubmed-5070419
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Bentham Science Publishers
record_format MEDLINE/PubMed
spelling pubmed-50704192016-11-14 Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin Tsunenaga, Makoto Curr Tissue Eng Article Recent research suggests that the basement membrane at the dermal-epidermal junction of the skin plays an important role in maintaining a healthy epidermis and dermis, and repeated damage to the skin can destabilize the skin and accelerate the aging process. Skin-equivalent models are suitable for studying the reconstruction of the basement membrane and its contribution to epidermal homeostasis because they lack the basement membrane and show abnormal expression of epidermal differentiation markers. By using these models, it has been shown that reconstruction of the basement membrane is enhanced not only by supplying basement membrane components, but also by inhibiting proteinases such as urokinase and matrix metalloproteinase. Although matrix metalloproteinase inhibitors assist in the reconstruction of the basement membrane structure, their action is not sufficient to promote its functional recovery. However, heparanase inhibitors stabilize the heparan sulfate chains of perlecan (a heparan sulfate proteoglycan) and promote the regulation of heparan sulfate binding growth factors in the basement membrane. Heparan sulfate promotes effective protein-protein interactions, thereby facilitating the assembly of type VII collagen anchoring fibrils and elastin-associated microfibrils. Using both matrix metalloproteinase inhibitors and heparanase inhibitors, the basement membrane in a skin-equivalent model comes close to recapitulating the structure and function of an in vivo basement membrane. Therefore, by using an appropriate dermis model and suitable protease inhibitors, it may be possible to produce skin-equivalent models that are more similar to natural skin Bentham Science Publishers 2016-08 2016-08 /pmc/articles/PMC5070419/ /pubmed/27853671 http://dx.doi.org/10.2174/2211542005666160725154356 Text en © 2016 Bentham Science Publishers https://creativecommons.org/licenses/by-nc/4.0/legalcode This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/legalcode ), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
spellingShingle Article
Tsunenaga, Makoto
Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin
title Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin
title_full Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin
title_fullStr Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin
title_full_unstemmed Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin
title_short Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin
title_sort heparanase inhibitors facilitate the assembly of the basement membrane in artificial skin
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070419/
https://www.ncbi.nlm.nih.gov/pubmed/27853671
http://dx.doi.org/10.2174/2211542005666160725154356
work_keys_str_mv AT tsunenagamakoto heparanaseinhibitorsfacilitatetheassemblyofthebasementmembraneinartificialskin