Cargando…
Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level
Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice‐cloud relationship in the Arctic using a satellite footpr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070557/ https://www.ncbi.nlm.nih.gov/pubmed/27818851 http://dx.doi.org/10.1002/2015JD023520 |
_version_ | 1782461161537536000 |
---|---|
author | Taylor, Patrick C. Kato, Seiji Xu, Kuan‐Man Cai, Ming |
author_facet | Taylor, Patrick C. Kato, Seiji Xu, Kuan‐Man Cai, Ming |
author_sort | Taylor, Patrick C. |
collection | PubMed |
description | Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice‐cloud relationship in the Arctic using a satellite footprint‐level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A‐Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest‐magnitude cloud‐sea ice covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near‐surface static stability is found at larger sea ice concentrations. |
format | Online Article Text |
id | pubmed-5070557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50705572016-11-02 Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level Taylor, Patrick C. Kato, Seiji Xu, Kuan‐Man Cai, Ming J Geophys Res Atmos Research Articles Understanding the cloud response to sea ice change is necessary for modeling Arctic climate. Previous work has primarily addressed this problem from the interannual variability perspective. This paper provides a refined perspective of sea ice‐cloud relationship in the Arctic using a satellite footprint‐level quantification of the covariance between sea ice and Arctic low cloud properties from NASA A‐Train active remote sensing data. The covariances between Arctic low cloud properties and sea ice concentration are quantified by first partitioning each footprint into four atmospheric regimes defined using thresholds of lower tropospheric stability and midtropospheric vertical velocity. Significant regional variability in the cloud properties is found within the atmospheric regimes indicating that the regimes do not completely account for the influence of meteorology. Regional anomalies are used to account for the remaining meteorological influence on clouds. After accounting for meteorological regime and regional influences, a statistically significant but weak covariance between cloud properties and sea ice is found in each season for at least one atmospheric regime. Smaller average cloud fraction and liquid water are found within footprints with more sea ice. The largest‐magnitude cloud‐sea ice covariance occurs between 500 m and 1.2 km when the lower tropospheric stability is between 16 and 24 K. The covariance between low cloud properties and sea ice is found to be largest in fall and is accompanied by significant changes in boundary layer temperature structure where larger average near‐surface static stability is found at larger sea ice concentrations. John Wiley and Sons Inc. 2015-12-27 2015-12-28 /pmc/articles/PMC5070557/ /pubmed/27818851 http://dx.doi.org/10.1002/2015JD023520 Text en ©2015. The Authors. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Taylor, Patrick C. Kato, Seiji Xu, Kuan‐Man Cai, Ming Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level |
title | Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level |
title_full | Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level |
title_fullStr | Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level |
title_full_unstemmed | Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level |
title_short | Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level |
title_sort | covariance between arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070557/ https://www.ncbi.nlm.nih.gov/pubmed/27818851 http://dx.doi.org/10.1002/2015JD023520 |
work_keys_str_mv | AT taylorpatrickc covariancebetweenarcticseaiceandcloudswithinatmosphericstateregimesatthesatellitefootprintlevel AT katoseiji covariancebetweenarcticseaiceandcloudswithinatmosphericstateregimesatthesatellitefootprintlevel AT xukuanman covariancebetweenarcticseaiceandcloudswithinatmosphericstateregimesatthesatellitefootprintlevel AT caiming covariancebetweenarcticseaiceandcloudswithinatmosphericstateregimesatthesatellitefootprintlevel |