Cargando…

Bone Marrow Stem/Progenitor Cells Attenuate the Inflammatory Milieu Following Substitution Urethroplasty

Substitution urethroplasty for the treatment of male stricture disease is often accompanied by subsequent tissue fibrosis and secondary stricture formation. Patients with pre-existing morbidities are often at increased risk of urethral stricture recurrence brought upon in-part by delayed vasculariza...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Joceline S., Bury, Matthew I., Fuller, Natalie J., Sturm, Renea M., Ahmad, Nida, Sharma, Arun K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5071897/
https://www.ncbi.nlm.nih.gov/pubmed/27762304
http://dx.doi.org/10.1038/srep35638
Descripción
Sumario:Substitution urethroplasty for the treatment of male stricture disease is often accompanied by subsequent tissue fibrosis and secondary stricture formation. Patients with pre-existing morbidities are often at increased risk of urethral stricture recurrence brought upon in-part by delayed vascularization accompanied by overactive inflammatory responses following surgery. Within the context of this study, we demonstrate the functional utility of a cell/scaffold composite graft comprised of human bone marrow-derived mesenchymal stem cells (MSC) combined with CD34+ hematopoietic stem/progenitor cells (HSPC) to modulate inflammation and wound healing in a rodent model of substitution urethroplasty. Composite grafts demonstrated potent anti-inflammatory effects with regards to tissue macrophage and neutrophil density following urethral tissue analyses. This was accompanied by a significant reduction in pro-inflammatory cytokines TNFα and IL-1β and further resulted in an earlier transition to tissue remodeling and maturation with a shift in collagen type III to I. Grafted animals demonstrated a progressive maturation and increase in vessel size compared to control animals. Overall, MSC/CD34+ HSPC composite grafts reduce inflammation, enhance an earlier transition to wound remodeling and maturation concurrently increasing neovascularization in the periurethral tissue. We demonstrate the feasibility and efficacy of a stem cell-seeded synthetic graft in a rodent substitution urethroplasty model.