Cargando…

Robotic QM/MM-driven maturation of antibody combining sites

In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibod...

Descripción completa

Detalles Bibliográficos
Autores principales: Smirnov, Ivan V., Golovin, Andrey V., Chatziefthimiou, Spyros D., Stepanova, Anastasiya V., Peng, Yingjie, Zolotareva, Olga I., Belogurov, Alexey A., Kurkova, Inna N., Ponomarenko, Natalie A., Wilmanns, Matthias, Blackburn, G. Michael, Gabibov, Alexander G., Lerner, Richard A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072179/
https://www.ncbi.nlm.nih.gov/pubmed/27774510
http://dx.doi.org/10.1126/sciadv.1501695
_version_ 1782461360527900672
author Smirnov, Ivan V.
Golovin, Andrey V.
Chatziefthimiou, Spyros D.
Stepanova, Anastasiya V.
Peng, Yingjie
Zolotareva, Olga I.
Belogurov, Alexey A.
Kurkova, Inna N.
Ponomarenko, Natalie A.
Wilmanns, Matthias
Blackburn, G. Michael
Gabibov, Alexander G.
Lerner, Richard A.
author_facet Smirnov, Ivan V.
Golovin, Andrey V.
Chatziefthimiou, Spyros D.
Stepanova, Anastasiya V.
Peng, Yingjie
Zolotareva, Olga I.
Belogurov, Alexey A.
Kurkova, Inna N.
Ponomarenko, Natalie A.
Wilmanns, Matthias
Blackburn, G. Michael
Gabibov, Alexander G.
Lerner, Richard A.
author_sort Smirnov, Ivan V.
collection PubMed
description In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico. We preselected A17, an Ig template, from a naïve library for its ability to disarm a toxic pesticide related to organophosphorus nerve agents. Virtual screening of 167,538 robotically generated mutants identified an optimum single point mutation, which experimentally boosted wild-type Ig scavenger performance by 170-fold. We validated the QM/MM predictions via kinetic analysis and crystal structures of mutant apo-A17 and covalently modified Ig, thereby identifying the displacement of one water molecule by an arginine as delivering this catalysis.
format Online
Article
Text
id pubmed-5072179
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-50721792016-10-21 Robotic QM/MM-driven maturation of antibody combining sites Smirnov, Ivan V. Golovin, Andrey V. Chatziefthimiou, Spyros D. Stepanova, Anastasiya V. Peng, Yingjie Zolotareva, Olga I. Belogurov, Alexey A. Kurkova, Inna N. Ponomarenko, Natalie A. Wilmanns, Matthias Blackburn, G. Michael Gabibov, Alexander G. Lerner, Richard A. Sci Adv Research Articles In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico. We preselected A17, an Ig template, from a naïve library for its ability to disarm a toxic pesticide related to organophosphorus nerve agents. Virtual screening of 167,538 robotically generated mutants identified an optimum single point mutation, which experimentally boosted wild-type Ig scavenger performance by 170-fold. We validated the QM/MM predictions via kinetic analysis and crystal structures of mutant apo-A17 and covalently modified Ig, thereby identifying the displacement of one water molecule by an arginine as delivering this catalysis. American Association for the Advancement of Science 2016-10-19 /pmc/articles/PMC5072179/ /pubmed/27774510 http://dx.doi.org/10.1126/sciadv.1501695 Text en Copyright © 2016, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Smirnov, Ivan V.
Golovin, Andrey V.
Chatziefthimiou, Spyros D.
Stepanova, Anastasiya V.
Peng, Yingjie
Zolotareva, Olga I.
Belogurov, Alexey A.
Kurkova, Inna N.
Ponomarenko, Natalie A.
Wilmanns, Matthias
Blackburn, G. Michael
Gabibov, Alexander G.
Lerner, Richard A.
Robotic QM/MM-driven maturation of antibody combining sites
title Robotic QM/MM-driven maturation of antibody combining sites
title_full Robotic QM/MM-driven maturation of antibody combining sites
title_fullStr Robotic QM/MM-driven maturation of antibody combining sites
title_full_unstemmed Robotic QM/MM-driven maturation of antibody combining sites
title_short Robotic QM/MM-driven maturation of antibody combining sites
title_sort robotic qm/mm-driven maturation of antibody combining sites
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072179/
https://www.ncbi.nlm.nih.gov/pubmed/27774510
http://dx.doi.org/10.1126/sciadv.1501695
work_keys_str_mv AT smirnovivanv roboticqmmmdrivenmaturationofantibodycombiningsites
AT golovinandreyv roboticqmmmdrivenmaturationofantibodycombiningsites
AT chatziefthimiouspyrosd roboticqmmmdrivenmaturationofantibodycombiningsites
AT stepanovaanastasiyav roboticqmmmdrivenmaturationofantibodycombiningsites
AT pengyingjie roboticqmmmdrivenmaturationofantibodycombiningsites
AT zolotarevaolgai roboticqmmmdrivenmaturationofantibodycombiningsites
AT belogurovalexeya roboticqmmmdrivenmaturationofantibodycombiningsites
AT kurkovainnan roboticqmmmdrivenmaturationofantibodycombiningsites
AT ponomarenkonataliea roboticqmmmdrivenmaturationofantibodycombiningsites
AT wilmannsmatthias roboticqmmmdrivenmaturationofantibodycombiningsites
AT blackburngmichael roboticqmmmdrivenmaturationofantibodycombiningsites
AT gabibovalexanderg roboticqmmmdrivenmaturationofantibodycombiningsites
AT lernerricharda roboticqmmmdrivenmaturationofantibodycombiningsites