Cargando…
Pharmacogenomics and Global Precision Medicine in the Context of Adverse Drug Reactions: Top 10 Opportunities and Challenges for the Next Decade
In a move indicative of the enthusiastic support of precision medicine, the U.S. President Barack Obama announced the Precision Medicine Initiative in January 2015. The global precision medicine ecosystem is, thus, receiving generous support from the United States ($215 million), and numerous other...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072285/ https://www.ncbi.nlm.nih.gov/pubmed/27643672 http://dx.doi.org/10.1089/omi.2016.0122 |
Sumario: | In a move indicative of the enthusiastic support of precision medicine, the U.S. President Barack Obama announced the Precision Medicine Initiative in January 2015. The global precision medicine ecosystem is, thus, receiving generous support from the United States ($215 million), and numerous other governments have followed suit. In the context of precision medicine, drug treatment and prediction of its outcomes have been important for nearly six decades in the field of pharmacogenomics. The field offers an elegant solution for minimizing the effects and occurrence of adverse drug reactions (ADRs). The Clinical Pharmacogenetics Implementation Consortium (CPIC) plays an important role in this context, and it aims at specifically guiding the translation of clinically relevant and evidence-based pharmacogenomics research. In this forward-looking analysis, we make particular reference to several of the CPIC guidelines and their role in guiding the treatment of highly relevant diseases, namely cardiovascular disease, major depressive disorder, cancer, and human immunodeficiency virus, with a view to predicting and managing ADRs. In addition, we provide a list of the top 10 crosscutting opportunities and challenges facing the fields of precision medicine and pharmacogenomics, which have broad applicability independent of the drug class involved. Many of these opportunities and challenges pertain to infrastructure, study design, policy, and science culture in the early 21st century. Ultimately, rational pharmacogenomics study design and the acquisition of comprehensive phenotypic data that proportionately match the genomics data should be an imperative as we move forward toward global precision medicine. |
---|