Cargando…

The Local Edge Machine: inference of dynamic models of gene regulation

We present a novel approach, the Local Edge Machine, for the inference of regulatory interactions directly from time-series gene expression data. We demonstrate its performance, robustness, and scalability on in silico datasets with varying behaviors, sizes, and degrees of complexity. Moreover, we d...

Descripción completa

Detalles Bibliográficos
Autores principales: McGoff, Kevin A., Guo, Xin, Deckard, Anastasia, Kelliher, Christina M., Leman, Adam R., Francey, Lauren J., Hogenesch, John B., Haase, Steven B., Harer, John L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072315/
https://www.ncbi.nlm.nih.gov/pubmed/27760556
http://dx.doi.org/10.1186/s13059-016-1076-z
_version_ 1782461385545875456
author McGoff, Kevin A.
Guo, Xin
Deckard, Anastasia
Kelliher, Christina M.
Leman, Adam R.
Francey, Lauren J.
Hogenesch, John B.
Haase, Steven B.
Harer, John L.
author_facet McGoff, Kevin A.
Guo, Xin
Deckard, Anastasia
Kelliher, Christina M.
Leman, Adam R.
Francey, Lauren J.
Hogenesch, John B.
Haase, Steven B.
Harer, John L.
author_sort McGoff, Kevin A.
collection PubMed
description We present a novel approach, the Local Edge Machine, for the inference of regulatory interactions directly from time-series gene expression data. We demonstrate its performance, robustness, and scalability on in silico datasets with varying behaviors, sizes, and degrees of complexity. Moreover, we demonstrate its ability to incorporate biological prior information and make informative predictions on a well-characterized in vivo system using data from budding yeast that have been synchronized in the cell cycle. Finally, we use an atlas of transcription data in a mammalian circadian system to illustrate how the method can be used for discovery in the context of large complex networks. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-1076-z) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5072315
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-50723152016-10-24 The Local Edge Machine: inference of dynamic models of gene regulation McGoff, Kevin A. Guo, Xin Deckard, Anastasia Kelliher, Christina M. Leman, Adam R. Francey, Lauren J. Hogenesch, John B. Haase, Steven B. Harer, John L. Genome Biol Method We present a novel approach, the Local Edge Machine, for the inference of regulatory interactions directly from time-series gene expression data. We demonstrate its performance, robustness, and scalability on in silico datasets with varying behaviors, sizes, and degrees of complexity. Moreover, we demonstrate its ability to incorporate biological prior information and make informative predictions on a well-characterized in vivo system using data from budding yeast that have been synchronized in the cell cycle. Finally, we use an atlas of transcription data in a mammalian circadian system to illustrate how the method can be used for discovery in the context of large complex networks. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-1076-z) contains supplementary material, which is available to authorized users. BioMed Central 2016-10-19 /pmc/articles/PMC5072315/ /pubmed/27760556 http://dx.doi.org/10.1186/s13059-016-1076-z Text en © The Author(s) 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Method
McGoff, Kevin A.
Guo, Xin
Deckard, Anastasia
Kelliher, Christina M.
Leman, Adam R.
Francey, Lauren J.
Hogenesch, John B.
Haase, Steven B.
Harer, John L.
The Local Edge Machine: inference of dynamic models of gene regulation
title The Local Edge Machine: inference of dynamic models of gene regulation
title_full The Local Edge Machine: inference of dynamic models of gene regulation
title_fullStr The Local Edge Machine: inference of dynamic models of gene regulation
title_full_unstemmed The Local Edge Machine: inference of dynamic models of gene regulation
title_short The Local Edge Machine: inference of dynamic models of gene regulation
title_sort local edge machine: inference of dynamic models of gene regulation
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072315/
https://www.ncbi.nlm.nih.gov/pubmed/27760556
http://dx.doi.org/10.1186/s13059-016-1076-z
work_keys_str_mv AT mcgoffkevina thelocaledgemachineinferenceofdynamicmodelsofgeneregulation
AT guoxin thelocaledgemachineinferenceofdynamicmodelsofgeneregulation
AT deckardanastasia thelocaledgemachineinferenceofdynamicmodelsofgeneregulation
AT kelliherchristinam thelocaledgemachineinferenceofdynamicmodelsofgeneregulation
AT lemanadamr thelocaledgemachineinferenceofdynamicmodelsofgeneregulation
AT franceylaurenj thelocaledgemachineinferenceofdynamicmodelsofgeneregulation
AT hogeneschjohnb thelocaledgemachineinferenceofdynamicmodelsofgeneregulation
AT haasestevenb thelocaledgemachineinferenceofdynamicmodelsofgeneregulation
AT harerjohnl thelocaledgemachineinferenceofdynamicmodelsofgeneregulation
AT mcgoffkevina localedgemachineinferenceofdynamicmodelsofgeneregulation
AT guoxin localedgemachineinferenceofdynamicmodelsofgeneregulation
AT deckardanastasia localedgemachineinferenceofdynamicmodelsofgeneregulation
AT kelliherchristinam localedgemachineinferenceofdynamicmodelsofgeneregulation
AT lemanadamr localedgemachineinferenceofdynamicmodelsofgeneregulation
AT franceylaurenj localedgemachineinferenceofdynamicmodelsofgeneregulation
AT hogeneschjohnb localedgemachineinferenceofdynamicmodelsofgeneregulation
AT haasestevenb localedgemachineinferenceofdynamicmodelsofgeneregulation
AT harerjohnl localedgemachineinferenceofdynamicmodelsofgeneregulation