Cargando…
The Local Edge Machine: inference of dynamic models of gene regulation
We present a novel approach, the Local Edge Machine, for the inference of regulatory interactions directly from time-series gene expression data. We demonstrate its performance, robustness, and scalability on in silico datasets with varying behaviors, sizes, and degrees of complexity. Moreover, we d...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072315/ https://www.ncbi.nlm.nih.gov/pubmed/27760556 http://dx.doi.org/10.1186/s13059-016-1076-z |
_version_ | 1782461385545875456 |
---|---|
author | McGoff, Kevin A. Guo, Xin Deckard, Anastasia Kelliher, Christina M. Leman, Adam R. Francey, Lauren J. Hogenesch, John B. Haase, Steven B. Harer, John L. |
author_facet | McGoff, Kevin A. Guo, Xin Deckard, Anastasia Kelliher, Christina M. Leman, Adam R. Francey, Lauren J. Hogenesch, John B. Haase, Steven B. Harer, John L. |
author_sort | McGoff, Kevin A. |
collection | PubMed |
description | We present a novel approach, the Local Edge Machine, for the inference of regulatory interactions directly from time-series gene expression data. We demonstrate its performance, robustness, and scalability on in silico datasets with varying behaviors, sizes, and degrees of complexity. Moreover, we demonstrate its ability to incorporate biological prior information and make informative predictions on a well-characterized in vivo system using data from budding yeast that have been synchronized in the cell cycle. Finally, we use an atlas of transcription data in a mammalian circadian system to illustrate how the method can be used for discovery in the context of large complex networks. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-1076-z) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5072315 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-50723152016-10-24 The Local Edge Machine: inference of dynamic models of gene regulation McGoff, Kevin A. Guo, Xin Deckard, Anastasia Kelliher, Christina M. Leman, Adam R. Francey, Lauren J. Hogenesch, John B. Haase, Steven B. Harer, John L. Genome Biol Method We present a novel approach, the Local Edge Machine, for the inference of regulatory interactions directly from time-series gene expression data. We demonstrate its performance, robustness, and scalability on in silico datasets with varying behaviors, sizes, and degrees of complexity. Moreover, we demonstrate its ability to incorporate biological prior information and make informative predictions on a well-characterized in vivo system using data from budding yeast that have been synchronized in the cell cycle. Finally, we use an atlas of transcription data in a mammalian circadian system to illustrate how the method can be used for discovery in the context of large complex networks. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-1076-z) contains supplementary material, which is available to authorized users. BioMed Central 2016-10-19 /pmc/articles/PMC5072315/ /pubmed/27760556 http://dx.doi.org/10.1186/s13059-016-1076-z Text en © The Author(s) 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Method McGoff, Kevin A. Guo, Xin Deckard, Anastasia Kelliher, Christina M. Leman, Adam R. Francey, Lauren J. Hogenesch, John B. Haase, Steven B. Harer, John L. The Local Edge Machine: inference of dynamic models of gene regulation |
title | The Local Edge Machine: inference of dynamic models of gene regulation |
title_full | The Local Edge Machine: inference of dynamic models of gene regulation |
title_fullStr | The Local Edge Machine: inference of dynamic models of gene regulation |
title_full_unstemmed | The Local Edge Machine: inference of dynamic models of gene regulation |
title_short | The Local Edge Machine: inference of dynamic models of gene regulation |
title_sort | local edge machine: inference of dynamic models of gene regulation |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072315/ https://www.ncbi.nlm.nih.gov/pubmed/27760556 http://dx.doi.org/10.1186/s13059-016-1076-z |
work_keys_str_mv | AT mcgoffkevina thelocaledgemachineinferenceofdynamicmodelsofgeneregulation AT guoxin thelocaledgemachineinferenceofdynamicmodelsofgeneregulation AT deckardanastasia thelocaledgemachineinferenceofdynamicmodelsofgeneregulation AT kelliherchristinam thelocaledgemachineinferenceofdynamicmodelsofgeneregulation AT lemanadamr thelocaledgemachineinferenceofdynamicmodelsofgeneregulation AT franceylaurenj thelocaledgemachineinferenceofdynamicmodelsofgeneregulation AT hogeneschjohnb thelocaledgemachineinferenceofdynamicmodelsofgeneregulation AT haasestevenb thelocaledgemachineinferenceofdynamicmodelsofgeneregulation AT harerjohnl thelocaledgemachineinferenceofdynamicmodelsofgeneregulation AT mcgoffkevina localedgemachineinferenceofdynamicmodelsofgeneregulation AT guoxin localedgemachineinferenceofdynamicmodelsofgeneregulation AT deckardanastasia localedgemachineinferenceofdynamicmodelsofgeneregulation AT kelliherchristinam localedgemachineinferenceofdynamicmodelsofgeneregulation AT lemanadamr localedgemachineinferenceofdynamicmodelsofgeneregulation AT franceylaurenj localedgemachineinferenceofdynamicmodelsofgeneregulation AT hogeneschjohnb localedgemachineinferenceofdynamicmodelsofgeneregulation AT haasestevenb localedgemachineinferenceofdynamicmodelsofgeneregulation AT harerjohnl localedgemachineinferenceofdynamicmodelsofgeneregulation |