Cargando…
The Local Edge Machine: inference of dynamic models of gene regulation
We present a novel approach, the Local Edge Machine, for the inference of regulatory interactions directly from time-series gene expression data. We demonstrate its performance, robustness, and scalability on in silico datasets with varying behaviors, sizes, and degrees of complexity. Moreover, we d...
Autores principales: | McGoff, Kevin A., Guo, Xin, Deckard, Anastasia, Kelliher, Christina M., Leman, Adam R., Francey, Lauren J., Hogenesch, John B., Haase, Steven B., Harer, John L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072315/ https://www.ncbi.nlm.nih.gov/pubmed/27760556 http://dx.doi.org/10.1186/s13059-016-1076-z |
Ejemplares similares
-
Assessment of Simulated Surveillance Testing and Quarantine in a SARS-CoV-2–Vaccinated Population of Students on a University Campus
por: Motta, Francis C., et al.
Publicado: (2021) -
Checkpoints couple transcription network oscillator dynamics to cell-cycle progression
por: Bristow, Sara L, et al.
Publicado: (2014) -
SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data
por: Perea, Jose A., et al.
Publicado: (2015) -
It's not all in the brain
por: Francey, Lauren J, et al.
Publicado: (2017) -
Investigating Conservation of the Cell-Cycle-Regulated Transcriptional Program in the Fungal Pathogen, Cryptococcus neoformans
por: Kelliher, Christina M., et al.
Publicado: (2016)