Cargando…
Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans
PURPOSE: To describe spectral-domain optical coherence tomography (OCT) methods for quantifying neuroretinal rim tissue in glaucoma and to compare these methods to the traditional retinal nerve fiber layer thickness diagnostic parameter. METHODS: Neuroretinal rim parameters derived from three-dimens...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072541/ https://www.ncbi.nlm.nih.gov/pubmed/27768203 http://dx.doi.org/10.1167/iovs.16-19802 |
_version_ | 1782461408073482240 |
---|---|
author | Tsikata, Edem Lee, Ramon Shieh, Eric Simavli, Huseyin Que, Christian J. Guo, Rong Khoueir, Ziad de Boer, Johannes Chen, Teresa C. |
author_facet | Tsikata, Edem Lee, Ramon Shieh, Eric Simavli, Huseyin Que, Christian J. Guo, Rong Khoueir, Ziad de Boer, Johannes Chen, Teresa C. |
author_sort | Tsikata, Edem |
collection | PubMed |
description | PURPOSE: To describe spectral-domain optical coherence tomography (OCT) methods for quantifying neuroretinal rim tissue in glaucoma and to compare these methods to the traditional retinal nerve fiber layer thickness diagnostic parameter. METHODS: Neuroretinal rim parameters derived from three-dimensional (3D) volume scans were compared with the two-dimensional (2D) Spectralis retinal nerve fiber layer (RNFL) thickness scans for diagnostic capability. This study analyzed one eye per patient of 104 glaucoma patients and 58 healthy subjects. The shortest distances between the cup surface and the OCT-based disc margin were automatically calculated to determine the thickness and area of the minimum distance band (MDB) neuroretinal rim parameter. Traditional 150-μm reference surface–based rim parameters (volume, area, and thickness) were also calculated. The diagnostic capabilities of these five parameters were compared with RNFL thickness using the area under the receiver operating characteristic (AUROC) curves. RESULTS: The MDB thickness had significantly higher diagnostic capability than the RNFL thickness in the nasal (0.913 vs. 0.818, P = 0.004) and temporal (0.922 vs. 0.858, P = 0.026) quadrants and the inferonasal (0.950 vs. 0.897, P = 0.011) and superonasal (0.933 vs. 0.868, P = 0.012) sectors. The MDB area and the three neuroretinal rim parameters based on the 150-μm reference surface had diagnostic capabilities similar to RNFL thickness. CONCLUSIONS: The 3D MDB thickness had a high diagnostic capability for glaucoma and may be of significant clinical utility. It had higher diagnostic capability than the RNFL thickness in the nasal and temporal quadrants and the inferonasal and superonasal sectors. |
format | Online Article Text |
id | pubmed-5072541 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-50725412016-10-27 Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans Tsikata, Edem Lee, Ramon Shieh, Eric Simavli, Huseyin Que, Christian J. Guo, Rong Khoueir, Ziad de Boer, Johannes Chen, Teresa C. Invest Ophthalmol Vis Sci Glaucoma PURPOSE: To describe spectral-domain optical coherence tomography (OCT) methods for quantifying neuroretinal rim tissue in glaucoma and to compare these methods to the traditional retinal nerve fiber layer thickness diagnostic parameter. METHODS: Neuroretinal rim parameters derived from three-dimensional (3D) volume scans were compared with the two-dimensional (2D) Spectralis retinal nerve fiber layer (RNFL) thickness scans for diagnostic capability. This study analyzed one eye per patient of 104 glaucoma patients and 58 healthy subjects. The shortest distances between the cup surface and the OCT-based disc margin were automatically calculated to determine the thickness and area of the minimum distance band (MDB) neuroretinal rim parameter. Traditional 150-μm reference surface–based rim parameters (volume, area, and thickness) were also calculated. The diagnostic capabilities of these five parameters were compared with RNFL thickness using the area under the receiver operating characteristic (AUROC) curves. RESULTS: The MDB thickness had significantly higher diagnostic capability than the RNFL thickness in the nasal (0.913 vs. 0.818, P = 0.004) and temporal (0.922 vs. 0.858, P = 0.026) quadrants and the inferonasal (0.950 vs. 0.897, P = 0.011) and superonasal (0.933 vs. 0.868, P = 0.012) sectors. The MDB area and the three neuroretinal rim parameters based on the 150-μm reference surface had diagnostic capabilities similar to RNFL thickness. CONCLUSIONS: The 3D MDB thickness had a high diagnostic capability for glaucoma and may be of significant clinical utility. It had higher diagnostic capability than the RNFL thickness in the nasal and temporal quadrants and the inferonasal and superonasal sectors. The Association for Research in Vision and Ophthalmology 2016-10 /pmc/articles/PMC5072541/ /pubmed/27768203 http://dx.doi.org/10.1167/iovs.16-19802 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Glaucoma Tsikata, Edem Lee, Ramon Shieh, Eric Simavli, Huseyin Que, Christian J. Guo, Rong Khoueir, Ziad de Boer, Johannes Chen, Teresa C. Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans |
title | Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans |
title_full | Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans |
title_fullStr | Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans |
title_full_unstemmed | Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans |
title_short | Comprehensive Three-Dimensional Analysis of the Neuroretinal Rim in Glaucoma Using High-Density Spectral-Domain Optical Coherence Tomography Volume Scans |
title_sort | comprehensive three-dimensional analysis of the neuroretinal rim in glaucoma using high-density spectral-domain optical coherence tomography volume scans |
topic | Glaucoma |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072541/ https://www.ncbi.nlm.nih.gov/pubmed/27768203 http://dx.doi.org/10.1167/iovs.16-19802 |
work_keys_str_mv | AT tsikataedem comprehensivethreedimensionalanalysisoftheneuroretinalriminglaucomausinghighdensityspectraldomainopticalcoherencetomographyvolumescans AT leeramon comprehensivethreedimensionalanalysisoftheneuroretinalriminglaucomausinghighdensityspectraldomainopticalcoherencetomographyvolumescans AT shieheric comprehensivethreedimensionalanalysisoftheneuroretinalriminglaucomausinghighdensityspectraldomainopticalcoherencetomographyvolumescans AT simavlihuseyin comprehensivethreedimensionalanalysisoftheneuroretinalriminglaucomausinghighdensityspectraldomainopticalcoherencetomographyvolumescans AT quechristianj comprehensivethreedimensionalanalysisoftheneuroretinalriminglaucomausinghighdensityspectraldomainopticalcoherencetomographyvolumescans AT guorong comprehensivethreedimensionalanalysisoftheneuroretinalriminglaucomausinghighdensityspectraldomainopticalcoherencetomographyvolumescans AT khoueirziad comprehensivethreedimensionalanalysisoftheneuroretinalriminglaucomausinghighdensityspectraldomainopticalcoherencetomographyvolumescans AT deboerjohannes comprehensivethreedimensionalanalysisoftheneuroretinalriminglaucomausinghighdensityspectraldomainopticalcoherencetomographyvolumescans AT chenteresac comprehensivethreedimensionalanalysisoftheneuroretinalriminglaucomausinghighdensityspectraldomainopticalcoherencetomographyvolumescans |