Cargando…
Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor
Walking speed is widely used to study human health status. Wearable inertial measurement units (IMU) are promising tools for the ambulatory measurement of walking speed. Among wearable inertial sensors, the ones worn on the wrist, such as a watch or band, have relatively higher potential to be easil...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072584/ https://www.ncbi.nlm.nih.gov/pubmed/27764231 http://dx.doi.org/10.1371/journal.pone.0165211 |
_version_ | 1782461417234890752 |
---|---|
author | Zihajehzadeh, Shaghayegh Park, Edward J. |
author_facet | Zihajehzadeh, Shaghayegh Park, Edward J. |
author_sort | Zihajehzadeh, Shaghayegh |
collection | PubMed |
description | Walking speed is widely used to study human health status. Wearable inertial measurement units (IMU) are promising tools for the ambulatory measurement of walking speed. Among wearable inertial sensors, the ones worn on the wrist, such as a watch or band, have relatively higher potential to be easily incorporated into daily lifestyle. Using the arm swing motion in walking, this paper proposes a regression model-based method for longitudinal walking speed estimation using a wrist-worn IMU. A novel kinematic variable is proposed, which finds the wrist acceleration in the principal axis (i.e. the direction of the arm swing). This variable (called pca-acc) is obtained by applying sensor fusion on IMU data to find the orientation followed by the use of principal component analysis. An experimental evaluation was performed on 15 healthy young subjects during free walking trials. The experimental results show that the use of the proposed pca-acc variable can significantly improve the walking speed estimation accuracy when compared to the use of raw acceleration information (p<0.01). When Gaussian process regression is used, the resulting walking speed estimation accuracy and precision is about 5.9% and 4.7%, respectively. |
format | Online Article Text |
id | pubmed-5072584 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-50725842016-10-27 Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor Zihajehzadeh, Shaghayegh Park, Edward J. PLoS One Research Article Walking speed is widely used to study human health status. Wearable inertial measurement units (IMU) are promising tools for the ambulatory measurement of walking speed. Among wearable inertial sensors, the ones worn on the wrist, such as a watch or band, have relatively higher potential to be easily incorporated into daily lifestyle. Using the arm swing motion in walking, this paper proposes a regression model-based method for longitudinal walking speed estimation using a wrist-worn IMU. A novel kinematic variable is proposed, which finds the wrist acceleration in the principal axis (i.e. the direction of the arm swing). This variable (called pca-acc) is obtained by applying sensor fusion on IMU data to find the orientation followed by the use of principal component analysis. An experimental evaluation was performed on 15 healthy young subjects during free walking trials. The experimental results show that the use of the proposed pca-acc variable can significantly improve the walking speed estimation accuracy when compared to the use of raw acceleration information (p<0.01). When Gaussian process regression is used, the resulting walking speed estimation accuracy and precision is about 5.9% and 4.7%, respectively. Public Library of Science 2016-10-20 /pmc/articles/PMC5072584/ /pubmed/27764231 http://dx.doi.org/10.1371/journal.pone.0165211 Text en © 2016 Zihajehzadeh, Park http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zihajehzadeh, Shaghayegh Park, Edward J. Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor |
title | Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor |
title_full | Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor |
title_fullStr | Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor |
title_full_unstemmed | Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor |
title_short | Regression Model-Based Walking Speed Estimation Using Wrist-Worn Inertial Sensor |
title_sort | regression model-based walking speed estimation using wrist-worn inertial sensor |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072584/ https://www.ncbi.nlm.nih.gov/pubmed/27764231 http://dx.doi.org/10.1371/journal.pone.0165211 |
work_keys_str_mv | AT zihajehzadehshaghayegh regressionmodelbasedwalkingspeedestimationusingwristworninertialsensor AT parkedwardj regressionmodelbasedwalkingspeedestimationusingwristworninertialsensor |