Cargando…
Determining the Stationarity Distance via a Reversible Stochastic Process
The problem of controlling stationarity involves an important aspect of forecasting, in which a time series is analyzed in terms of levels or differences. In the literature, non-parametric stationary tests, such as the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, have been shown to be very import...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072589/ https://www.ncbi.nlm.nih.gov/pubmed/27764103 http://dx.doi.org/10.1371/journal.pone.0164110 |
_version_ | 1782461418404052992 |
---|---|
author | Poulos, Marios |
author_facet | Poulos, Marios |
author_sort | Poulos, Marios |
collection | PubMed |
description | The problem of controlling stationarity involves an important aspect of forecasting, in which a time series is analyzed in terms of levels or differences. In the literature, non-parametric stationary tests, such as the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, have been shown to be very important; however, they are affected by problems with the reliability of lag and sample size selection. To date, no theoretical criterion has been proposed for the lag-length selection for tests of the null hypothesis of stationarity. Their use should be avoided, even for the purpose of so-called ‘confirmation’. The aim of this study is to introduce a new method that measures the distance by obtaining each numerical series from its own time-reversed series. This distance is based on a novel stationary ergodic process, in which the stationary series has reversible symmetric features, and is calculated using the Dynamic Time-warping (DTW) algorithm in a self-correlation procedure. Furthermore, to establish a stronger statistical foundation for this method, the F-test is used as a statistical control and is a suggestion for future statistical research on resolving the problem of a sample of limited size being introduced. Finally, as described in the theoretical and experimental documentation, this distance indicates the degree of non-stationarity of the times series. |
format | Online Article Text |
id | pubmed-5072589 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-50725892016-10-27 Determining the Stationarity Distance via a Reversible Stochastic Process Poulos, Marios PLoS One Research Article The problem of controlling stationarity involves an important aspect of forecasting, in which a time series is analyzed in terms of levels or differences. In the literature, non-parametric stationary tests, such as the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, have been shown to be very important; however, they are affected by problems with the reliability of lag and sample size selection. To date, no theoretical criterion has been proposed for the lag-length selection for tests of the null hypothesis of stationarity. Their use should be avoided, even for the purpose of so-called ‘confirmation’. The aim of this study is to introduce a new method that measures the distance by obtaining each numerical series from its own time-reversed series. This distance is based on a novel stationary ergodic process, in which the stationary series has reversible symmetric features, and is calculated using the Dynamic Time-warping (DTW) algorithm in a self-correlation procedure. Furthermore, to establish a stronger statistical foundation for this method, the F-test is used as a statistical control and is a suggestion for future statistical research on resolving the problem of a sample of limited size being introduced. Finally, as described in the theoretical and experimental documentation, this distance indicates the degree of non-stationarity of the times series. Public Library of Science 2016-10-20 /pmc/articles/PMC5072589/ /pubmed/27764103 http://dx.doi.org/10.1371/journal.pone.0164110 Text en © 2016 Marios Poulos http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Poulos, Marios Determining the Stationarity Distance via a Reversible Stochastic Process |
title | Determining the Stationarity Distance via a Reversible Stochastic Process |
title_full | Determining the Stationarity Distance via a Reversible Stochastic Process |
title_fullStr | Determining the Stationarity Distance via a Reversible Stochastic Process |
title_full_unstemmed | Determining the Stationarity Distance via a Reversible Stochastic Process |
title_short | Determining the Stationarity Distance via a Reversible Stochastic Process |
title_sort | determining the stationarity distance via a reversible stochastic process |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5072589/ https://www.ncbi.nlm.nih.gov/pubmed/27764103 http://dx.doi.org/10.1371/journal.pone.0164110 |
work_keys_str_mv | AT poulosmarios determiningthestationaritydistanceviaareversiblestochasticprocess |