Cargando…

The significance of linoleic acid in food sources for detritivorous benthic invertebrates

Chemical composition of organic matter (OM) is a key driver for detritus consumption by macroinvertebrates and polyunsaturated fatty acid (PUFA) content is considered a candidate indicator of food palatability. Since traditionally used complex natural OM covaries in many quality attributes, it remai...

Descripción completa

Detalles Bibliográficos
Autores principales: Vonk, J. Arie, van Kuijk, Bernd F., van Beusekom, Mick, Hunting, Ellard R., Kraak, Michiel H. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073349/
https://www.ncbi.nlm.nih.gov/pubmed/27767068
http://dx.doi.org/10.1038/srep35785
Descripción
Sumario:Chemical composition of organic matter (OM) is a key driver for detritus consumption by macroinvertebrates and polyunsaturated fatty acid (PUFA) content is considered a candidate indicator of food palatability. Since traditionally used complex natural OM covaries in many quality attributes, it remains uncertain whether benthic invertebrates developed an actual preference for PUFA-rich food. Therefore we aimed to test the influence of the PUFA linoleic acid on OM consumption by aquatic macroinvertebrates using standardized surrogate substrates (decomposition and consumption tablet, DECOTAB) with added linoleic acid (PUFA) in comparison to consumption of DECOTAB containing only cellulose (Standard) or ground macrophytes (Plant). In microcosms, we observed a higher consumption rate of PUFA DECOTAB in comparison to Standard DECOTAB in two functionally distinct invertebrate species (Lumbriculus variegatus and Asellus aquaticus). This effect appeared to be overruled in the field due to unknown sources of natural variation. Although we observed higher consumption rates in species-rich ditches compared to species-poor ditches, consumption rates were comparable for all three types of DECOTAB deployed. Upon reduced food quality and palatability, results presented here hint that PUFA like linoleic acid may be a key OM attribute driving the performance of benthic macroinvertebrates and inherent functioning of aquatic ecosystems.