Cargando…
Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion
BACKGROUND: Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass pr...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073452/ https://www.ncbi.nlm.nih.gov/pubmed/27777626 http://dx.doi.org/10.1186/s13068-016-0639-2 |
_version_ | 1782461577906094080 |
---|---|
author | Lin, Chien-Yuan Jakes, Joseph E. Donohoe, Bryon S. Ciesielski, Peter N. Yang, Haibing Gleber, Sophie-Charlotte Vogt, Stefan Ding, Shi-You Peer, Wendy A. Murphy, Angus S. McCann, Maureen C. Himmel, Michael E. Tucker, Melvin P. Wei, Hui |
author_facet | Lin, Chien-Yuan Jakes, Joseph E. Donohoe, Bryon S. Ciesielski, Peter N. Yang, Haibing Gleber, Sophie-Charlotte Vogt, Stefan Ding, Shi-You Peer, Wendy A. Murphy, Angus S. McCann, Maureen C. Himmel, Michael E. Tucker, Melvin P. Wei, Hui |
author_sort | Lin, Chien-Yuan |
collection | PubMed |
description | BACKGROUND: Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cell walls (referred to here as FerEX). RESULTS: The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. CONCLUSIONS: This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. The results are attributed to the intimate colocation of the iron co-catalyst and the cellulose and hemicellulose within the plant cell-wall region, supporting the genetic modification strategy for incorporating conversion catalysts into energy crops prior to harvesting or processing at the biorefinery. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-016-0639-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5073452 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-50734522016-10-24 Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion Lin, Chien-Yuan Jakes, Joseph E. Donohoe, Bryon S. Ciesielski, Peter N. Yang, Haibing Gleber, Sophie-Charlotte Vogt, Stefan Ding, Shi-You Peer, Wendy A. Murphy, Angus S. McCann, Maureen C. Himmel, Michael E. Tucker, Melvin P. Wei, Hui Biotechnol Biofuels Research BACKGROUND: Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cell walls (referred to here as FerEX). RESULTS: The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. CONCLUSIONS: This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. The results are attributed to the intimate colocation of the iron co-catalyst and the cellulose and hemicellulose within the plant cell-wall region, supporting the genetic modification strategy for incorporating conversion catalysts into energy crops prior to harvesting or processing at the biorefinery. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-016-0639-2) contains supplementary material, which is available to authorized users. BioMed Central 2016-10-21 /pmc/articles/PMC5073452/ /pubmed/27777626 http://dx.doi.org/10.1186/s13068-016-0639-2 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Lin, Chien-Yuan Jakes, Joseph E. Donohoe, Bryon S. Ciesielski, Peter N. Yang, Haibing Gleber, Sophie-Charlotte Vogt, Stefan Ding, Shi-You Peer, Wendy A. Murphy, Angus S. McCann, Maureen C. Himmel, Michael E. Tucker, Melvin P. Wei, Hui Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion |
title | Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion |
title_full | Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion |
title_fullStr | Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion |
title_full_unstemmed | Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion |
title_short | Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion |
title_sort | directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073452/ https://www.ncbi.nlm.nih.gov/pubmed/27777626 http://dx.doi.org/10.1186/s13068-016-0639-2 |
work_keys_str_mv | AT linchienyuan directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT jakesjosephe directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT donohoebryons directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT ciesielskipetern directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT yanghaibing directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT glebersophiecharlotte directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT vogtstefan directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT dingshiyou directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT peerwendya directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT murphyanguss directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT mccannmaureenc directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT himmelmichaele directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT tuckermelvinp directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion AT weihui directedplantcellwallaccumulationofironembeddingcocatalystforefficientbiomassconversion |