Cargando…

Assessment of proximal pulmonary arterial stiffness using magnetic resonance imaging: effects of technique, age and exercise

INTRODUCTION: To compare the reproducibility of pulmonary pulse wave velocity (PWV) techniques, and the effects of age and exercise on these. METHODS: 10 young healthy volunteers (YHV) and 20 older healthy volunteers (OHV) with no cardiac or lung condition were recruited. High temporal resolution ph...

Descripción completa

Detalles Bibliográficos
Autores principales: Weir-McCall, Jonathan R, Kamalasanan, Anu, Cassidy, Deidre B, Struthers, Allan D, Lipworth, Brian J, Houston, J Graeme
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073626/
https://www.ncbi.nlm.nih.gov/pubmed/27843548
http://dx.doi.org/10.1136/bmjresp-2016-000149
Descripción
Sumario:INTRODUCTION: To compare the reproducibility of pulmonary pulse wave velocity (PWV) techniques, and the effects of age and exercise on these. METHODS: 10 young healthy volunteers (YHV) and 20 older healthy volunteers (OHV) with no cardiac or lung condition were recruited. High temporal resolution phase contrast sequences were performed through the main pulmonary arteries (MPAs), right pulmonary arteries (RPAs) and left pulmonary arteries (LPAs), while high spatial resolution sequences were obtained through the MPA. YHV underwent 2 MRIs 6 months apart with the sequences repeated during exercise. OHV underwent an MRI scan with on-table repetition. PWV was calculated using the transit time (TT) and flow area techniques (QA). 3 methods for calculating QA PWV were compared. RESULTS: PWV did not differ between the two age groups (YHV 2.4±0.3/ms, OHV 2.9±0.2/ms, p=0.1). Using a high temporal resolution sequence through the RPA using the QA accounting for wave reflections yielded consistently better within-scan, interscan, intraobserver and interobserver reproducibility. Exercise did not result in a change in either TT PWV (mean (95% CI) of the differences: −0.42 (−1.2 to 0.4), p=0.24) or QA PWV (mean (95% CI) of the differences: 0.10 (−0.5 to 0.9), p=0.49) despite a significant rise in heart rate (65±2 to 87±3, p<0.0001), blood pressure (113/68 to 130/84, p<0.0001) and cardiac output (5.4±0.4 to 6.7±0.6 L/min, p=0.004). CONCLUSIONS: QA PWV performed through the RPA using a high temporal resolution sequence accounting for wave reflections yields the most reproducible measurements of pulmonary PWV.