Cargando…
BCM: toolkit for Bayesian analysis of Computational Models using samplers
BACKGROUND: Computational models in biology are characterized by a large degree of uncertainty. This uncertainty can be analyzed with Bayesian statistics, however, the sampling algorithms that are frequently used for calculating Bayesian statistical estimates are computationally demanding, and each...
Autores principales: | Thijssen, Bram, Dijkstra, Tjeerd M. H., Heskes, Tom, Wessels, Lodewyk F. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073811/ https://www.ncbi.nlm.nih.gov/pubmed/27769238 http://dx.doi.org/10.1186/s12918-016-0339-3 |
Ejemplares similares
-
Bayesian data integration for quantifying the contribution of diverse
measurements to parameter estimates
por: Thijssen, Bram, et al.
Publicado: (2018) -
ABCtoolbox: a versatile toolkit for approximate Bayesian computations
por: Wegmann, Daniel, et al.
Publicado: (2010) -
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference
por: Thijssen, Bram, et al.
Publicado: (2020) -
Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks
por: Paluszewski, Martin, et al.
Publicado: (2010) -
LDkit: a parallel computing toolkit for linkage disequilibrium analysis
por: Tang, You, et al.
Publicado: (2020)