Cargando…

Fetal life malnutrition was not reflected in the relative abundances of adiponectin and leptin mRNAs in adipose tissue in male mink kits at 9.5 weeks of age

BACKGROUND: Malnutrition in fetal life and during suckling have in some animal studies resulted in adaptive changes related to the fat and glucose metabolism, which in the long term might predispose the offspring for metabolic disorders such as obesity later in life. The objective was to study the e...

Descripción completa

Detalles Bibliográficos
Autores principales: Matthiesen, Connie F., Tauson, Anne-Helene
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073855/
https://www.ncbi.nlm.nih.gov/pubmed/27766976
http://dx.doi.org/10.1186/s13028-016-0250-3
Descripción
Sumario:BACKGROUND: Malnutrition in fetal life and during suckling have in some animal studies resulted in adaptive changes related to the fat and glucose metabolism, which in the long term might predispose the offspring for metabolic disorders such as obesity later in life. The objective was to study the effect of fetal life malnutrition in male mink on the gene expression of leptin and adiponectin in different adipose tissue sites. RESULTS: Thirty-two male mink, strict carnivore species, exposed to low (FL) or adequate (FA) protein provision the last 16.3 ± 1.8 days of fetal life and randomly assigned to a low (LP) or adequate (AP) protein diet from 7 to 9.5 weeks of age were used. Adipose tissues (subcutaneous, perirenal and mesenteric) were analyzed using qPCR. Fetal life or post-weaning protein provision did not affect the relative abundances of leptin and adiponectin mRNAs in adipose tissue at 9.5 weeks of age. Relative abundances of leptin and adiponectin mRNAs were different between adipose tissue sites and were significantly higher in subcutaneous than in perirenal and mesenteric tissues. CONCLUSION: Fetal life protein malnutrition in male mink, did not result in adaptive changes in the gene expression of leptin and adiponectin mRNAs in adipose tissue at 9.5 weeks of age as found in rodents. However, both leptin and adiponectin mRNAs were significantly differently expressed between tissue sites.