Cargando…
Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression
We introduce the Microenvironment Cell Populations-counter (MCP-counter) method, which allows the robust quantification of the absolute abundance of eight immune and two stromal cell populations in heterogeneous tissues from transcriptomic data. We present in vitro mRNA mixture and ex vivo immunohis...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073889/ https://www.ncbi.nlm.nih.gov/pubmed/27765066 http://dx.doi.org/10.1186/s13059-016-1070-5 |
_version_ | 1782461650944655360 |
---|---|
author | Becht, Etienne Giraldo, Nicolas A. Lacroix, Laetitia Buttard, Bénédicte Elarouci, Nabila Petitprez, Florent Selves, Janick Laurent-Puig, Pierre Sautès-Fridman, Catherine Fridman, Wolf H. de Reyniès, Aurélien |
author_facet | Becht, Etienne Giraldo, Nicolas A. Lacroix, Laetitia Buttard, Bénédicte Elarouci, Nabila Petitprez, Florent Selves, Janick Laurent-Puig, Pierre Sautès-Fridman, Catherine Fridman, Wolf H. de Reyniès, Aurélien |
author_sort | Becht, Etienne |
collection | PubMed |
description | We introduce the Microenvironment Cell Populations-counter (MCP-counter) method, which allows the robust quantification of the absolute abundance of eight immune and two stromal cell populations in heterogeneous tissues from transcriptomic data. We present in vitro mRNA mixture and ex vivo immunohistochemical data that quantitatively support the validity of our method’s estimates. Additionally, we demonstrate that MCP-counter overcomes several limitations or weaknesses of previously proposed computational approaches. MCP-counter is applied to draw a global picture of immune infiltrates across human healthy tissues and non-hematopoietic human tumors and recapitulates microenvironment-based patient stratifications associated with overall survival in lung adenocarcinoma and colorectal and breast cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-1070-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5073889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-50738892016-10-26 Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression Becht, Etienne Giraldo, Nicolas A. Lacroix, Laetitia Buttard, Bénédicte Elarouci, Nabila Petitprez, Florent Selves, Janick Laurent-Puig, Pierre Sautès-Fridman, Catherine Fridman, Wolf H. de Reyniès, Aurélien Genome Biol Method We introduce the Microenvironment Cell Populations-counter (MCP-counter) method, which allows the robust quantification of the absolute abundance of eight immune and two stromal cell populations in heterogeneous tissues from transcriptomic data. We present in vitro mRNA mixture and ex vivo immunohistochemical data that quantitatively support the validity of our method’s estimates. Additionally, we demonstrate that MCP-counter overcomes several limitations or weaknesses of previously proposed computational approaches. MCP-counter is applied to draw a global picture of immune infiltrates across human healthy tissues and non-hematopoietic human tumors and recapitulates microenvironment-based patient stratifications associated with overall survival in lung adenocarcinoma and colorectal and breast cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-1070-5) contains supplementary material, which is available to authorized users. BioMed Central 2016-10-20 /pmc/articles/PMC5073889/ /pubmed/27765066 http://dx.doi.org/10.1186/s13059-016-1070-5 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Method Becht, Etienne Giraldo, Nicolas A. Lacroix, Laetitia Buttard, Bénédicte Elarouci, Nabila Petitprez, Florent Selves, Janick Laurent-Puig, Pierre Sautès-Fridman, Catherine Fridman, Wolf H. de Reyniès, Aurélien Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression |
title | Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression |
title_full | Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression |
title_fullStr | Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression |
title_full_unstemmed | Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression |
title_short | Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression |
title_sort | estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073889/ https://www.ncbi.nlm.nih.gov/pubmed/27765066 http://dx.doi.org/10.1186/s13059-016-1070-5 |
work_keys_str_mv | AT bechtetienne estimatingthepopulationabundanceoftissueinfiltratingimmuneandstromalcellpopulationsusinggeneexpression AT giraldonicolasa estimatingthepopulationabundanceoftissueinfiltratingimmuneandstromalcellpopulationsusinggeneexpression AT lacroixlaetitia estimatingthepopulationabundanceoftissueinfiltratingimmuneandstromalcellpopulationsusinggeneexpression AT buttardbenedicte estimatingthepopulationabundanceoftissueinfiltratingimmuneandstromalcellpopulationsusinggeneexpression AT elaroucinabila estimatingthepopulationabundanceoftissueinfiltratingimmuneandstromalcellpopulationsusinggeneexpression AT petitprezflorent estimatingthepopulationabundanceoftissueinfiltratingimmuneandstromalcellpopulationsusinggeneexpression AT selvesjanick estimatingthepopulationabundanceoftissueinfiltratingimmuneandstromalcellpopulationsusinggeneexpression AT laurentpuigpierre estimatingthepopulationabundanceoftissueinfiltratingimmuneandstromalcellpopulationsusinggeneexpression AT sautesfridmancatherine estimatingthepopulationabundanceoftissueinfiltratingimmuneandstromalcellpopulationsusinggeneexpression AT fridmanwolfh estimatingthepopulationabundanceoftissueinfiltratingimmuneandstromalcellpopulationsusinggeneexpression AT dereyniesaurelien estimatingthepopulationabundanceoftissueinfiltratingimmuneandstromalcellpopulationsusinggeneexpression |