Cargando…
Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach
BACKGROUND: Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop...
Autores principales: | Mete, Mutlu, Sakoglu, Unal, Spence, Jeffrey S., Devous, Michael D., Harris, Thomas S., Adinoff, Bryon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073995/ https://www.ncbi.nlm.nih.gov/pubmed/27766943 http://dx.doi.org/10.1186/s12859-016-1218-z |
Ejemplares similares
-
Cortico-Amygdala Coupling as a Marker of Early Relapse Risk in Cocaine-Addicted Individuals
por: McHugh, Meredith J., et al.
Publicado: (2014) -
The Classification of Substance Use Disorders: Historical, Contextual, and Conceptual Considerations
por: Robinson, Sean M., et al.
Publicado: (2016) -
Lesion detection in demoscopy images with novel density-based and active contour approaches
por: Mete, Mutlu, et al.
Publicado: (2010) -
Support Vector Machine Implementations for Classification & Clustering
por: Winters-Hilt, Stephen, et al.
Publicado: (2006) -
Functional connectivity of dorsolateral prefrontal cortex predicts cocaine relapse: implications for neuromodulation treatment
por: Zhai, Tianye, et al.
Publicado: (2021)