Cargando…
Magnetic Resonance Imaging-Based Radiomic Profiles Predict Patient Prognosis in Newly Diagnosed Glioblastoma Before Therapy
Magnetic resonance imaging (MRI) is used to diagnose and monitor brain tumors. Extracting additional information from medical imaging and relating it to a clinical variable of interest is broadly defined as radiomics. Here, multiparametric MRI radiomic profiles (RPs) of de novo glioblastoma (GBM) br...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074084/ https://www.ncbi.nlm.nih.gov/pubmed/27774518 http://dx.doi.org/10.18383/j.tom.2016.00250 |
_version_ | 1782461693319708672 |
---|---|
author | McGarry, Sean D. Hurrell, Sarah L. Kaczmarowski, Amy L. Cochran, Elizabeth J. Connelly, Jennifer Rand, Scott D. Schmainda, Kathleen M. LaViolette, Peter S. |
author_facet | McGarry, Sean D. Hurrell, Sarah L. Kaczmarowski, Amy L. Cochran, Elizabeth J. Connelly, Jennifer Rand, Scott D. Schmainda, Kathleen M. LaViolette, Peter S. |
author_sort | McGarry, Sean D. |
collection | PubMed |
description | Magnetic resonance imaging (MRI) is used to diagnose and monitor brain tumors. Extracting additional information from medical imaging and relating it to a clinical variable of interest is broadly defined as radiomics. Here, multiparametric MRI radiomic profiles (RPs) of de novo glioblastoma (GBM) brain tumors is related with patient prognosis. Clinical imaging from 81 patients with GBM before surgery was analyzed. Four MRI contrasts were aligned, masked by margins defined by gadolinium contrast enhancement and T2/fluid attenuated inversion recovery hyperintensity, and contoured based on image intensity. These segmentations were combined for visualization and quantification by assigning a 4-digit numerical code to each voxel to indicate the segmented RP. Each RP volume was then compared with overall survival. A combined classifier was then generated on the basis of significant RPs and optimized volume thresholds. Five RPs were predictive of overall survival before therapy. Combining the RP classifiers into a single prognostic score predicted patient survival better than each alone (P < .005). Voxels coded with 1 RP associated with poor prognosis were pathologically confirmed to contain hypercellular tumor. This study applies radiomic profiling to de novo patients with GBM to determine imaging signatures associated with poor prognosis at tumor diagnosis. This tool may be useful for planning surgical resection or radiation treatment margins. |
format | Online Article Text |
id | pubmed-5074084 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Grapho Publications, LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-50740842016-10-21 Magnetic Resonance Imaging-Based Radiomic Profiles Predict Patient Prognosis in Newly Diagnosed Glioblastoma Before Therapy McGarry, Sean D. Hurrell, Sarah L. Kaczmarowski, Amy L. Cochran, Elizabeth J. Connelly, Jennifer Rand, Scott D. Schmainda, Kathleen M. LaViolette, Peter S. Tomography Research Articles Magnetic resonance imaging (MRI) is used to diagnose and monitor brain tumors. Extracting additional information from medical imaging and relating it to a clinical variable of interest is broadly defined as radiomics. Here, multiparametric MRI radiomic profiles (RPs) of de novo glioblastoma (GBM) brain tumors is related with patient prognosis. Clinical imaging from 81 patients with GBM before surgery was analyzed. Four MRI contrasts were aligned, masked by margins defined by gadolinium contrast enhancement and T2/fluid attenuated inversion recovery hyperintensity, and contoured based on image intensity. These segmentations were combined for visualization and quantification by assigning a 4-digit numerical code to each voxel to indicate the segmented RP. Each RP volume was then compared with overall survival. A combined classifier was then generated on the basis of significant RPs and optimized volume thresholds. Five RPs were predictive of overall survival before therapy. Combining the RP classifiers into a single prognostic score predicted patient survival better than each alone (P < .005). Voxels coded with 1 RP associated with poor prognosis were pathologically confirmed to contain hypercellular tumor. This study applies radiomic profiling to de novo patients with GBM to determine imaging signatures associated with poor prognosis at tumor diagnosis. This tool may be useful for planning surgical resection or radiation treatment margins. Grapho Publications, LLC 2016-09 /pmc/articles/PMC5074084/ /pubmed/27774518 http://dx.doi.org/10.18383/j.tom.2016.00250 Text en © 2016 The Authors. Published by Grapho Publications, LLC http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Articles McGarry, Sean D. Hurrell, Sarah L. Kaczmarowski, Amy L. Cochran, Elizabeth J. Connelly, Jennifer Rand, Scott D. Schmainda, Kathleen M. LaViolette, Peter S. Magnetic Resonance Imaging-Based Radiomic Profiles Predict Patient Prognosis in Newly Diagnosed Glioblastoma Before Therapy |
title | Magnetic Resonance Imaging-Based Radiomic Profiles Predict Patient Prognosis in Newly Diagnosed Glioblastoma Before Therapy |
title_full | Magnetic Resonance Imaging-Based Radiomic Profiles Predict Patient Prognosis in Newly Diagnosed Glioblastoma Before Therapy |
title_fullStr | Magnetic Resonance Imaging-Based Radiomic Profiles Predict Patient Prognosis in Newly Diagnosed Glioblastoma Before Therapy |
title_full_unstemmed | Magnetic Resonance Imaging-Based Radiomic Profiles Predict Patient Prognosis in Newly Diagnosed Glioblastoma Before Therapy |
title_short | Magnetic Resonance Imaging-Based Radiomic Profiles Predict Patient Prognosis in Newly Diagnosed Glioblastoma Before Therapy |
title_sort | magnetic resonance imaging-based radiomic profiles predict patient prognosis in newly diagnosed glioblastoma before therapy |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074084/ https://www.ncbi.nlm.nih.gov/pubmed/27774518 http://dx.doi.org/10.18383/j.tom.2016.00250 |
work_keys_str_mv | AT mcgarryseand magneticresonanceimagingbasedradiomicprofilespredictpatientprognosisinnewlydiagnosedglioblastomabeforetherapy AT hurrellsarahl magneticresonanceimagingbasedradiomicprofilespredictpatientprognosisinnewlydiagnosedglioblastomabeforetherapy AT kaczmarowskiamyl magneticresonanceimagingbasedradiomicprofilespredictpatientprognosisinnewlydiagnosedglioblastomabeforetherapy AT cochranelizabethj magneticresonanceimagingbasedradiomicprofilespredictpatientprognosisinnewlydiagnosedglioblastomabeforetherapy AT connellyjennifer magneticresonanceimagingbasedradiomicprofilespredictpatientprognosisinnewlydiagnosedglioblastomabeforetherapy AT randscottd magneticresonanceimagingbasedradiomicprofilespredictpatientprognosisinnewlydiagnosedglioblastomabeforetherapy AT schmaindakathleenm magneticresonanceimagingbasedradiomicprofilespredictpatientprognosisinnewlydiagnosedglioblastomabeforetherapy AT laviolettepeters magneticresonanceimagingbasedradiomicprofilespredictpatientprognosisinnewlydiagnosedglioblastomabeforetherapy |