Cargando…

Nanoengineering to Achieve High Sodium Storage: A Case Study of Carbon Coated Hierarchical Nanoporous TiO(2) Microfibers

Nanoengineering of electrode materials can directly facilitate sodium ion accessibility and transport, thus enhancing electrochemical performance in sodium ion batteries. Here, highly sodium‐accessible carbon coated nanoporous TiO(2) microfibers have been synthesised via the facile electrospinning t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Nü, Gao, Yuan, Wang, Yun‐Xiao, Liu, Kai, Lai, Weihong, Hu, Yemin, Zhao, Yong, Chou, Shu‐Lei, Jiang, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074262/
https://www.ncbi.nlm.nih.gov/pubmed/27818908
http://dx.doi.org/10.1002/advs.201600013
Descripción
Sumario:Nanoengineering of electrode materials can directly facilitate sodium ion accessibility and transport, thus enhancing electrochemical performance in sodium ion batteries. Here, highly sodium‐accessible carbon coated nanoporous TiO(2) microfibers have been synthesised via the facile electrospinning technique which can deliver an enhanced capacity of ≈167 mAh g(−1) after 450 cycles at current density of 50 mA g(−1) and retain a capacity of ≈71 mAh g(−1) at the high current rate of 1 A g(−1). With the benefits of their porous structure, thin TiO(2) inner walls, and the introduction of conductive carbon, the nanoporous TiO(2)/C microfibers exhibit high ion accessibility, fast Na ion transport, and fast electron transport, thereby leading to the excellent Na‐storage properties presented here. Nanostructuring is proven to be a fruitful strategy that can alleviate the reliance on materials' intrinsic nature; and the electrospinning technique is versatile and cost‐effective for the fabrication of such an effective nanoporous microfiber structure.