Cargando…
TIM-3 is not essential for development of airway inflammation induced by house dust mite antigens
BACKGROUND: T cell immunoglobulin domain and mucin domain-containing molecule 3 (TIM-3), which is preferentially expressed on Th1 cells rather than Th2 cells, is considered to be a negative regulator of Th1 cell function. This suggests that TIM-3 indirectly enhances Th2-type immune responses by supp...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074363/ https://www.ncbi.nlm.nih.gov/pubmed/27209052 http://dx.doi.org/10.1016/j.alit.2016.04.008 |
Sumario: | BACKGROUND: T cell immunoglobulin domain and mucin domain-containing molecule 3 (TIM-3), which is preferentially expressed on Th1 cells rather than Th2 cells, is considered to be a negative regulator of Th1 cell function. This suggests that TIM-3 indirectly enhances Th2-type immune responses by suppressing Th1 cell function. METHODS: To investigate TIM-3's possible involvement in Th2-type acute and chronic airway inflammation, wild-type and TIM-3-deficient (TIM-3(−/−)) mice were sensitized and challenged with a house dust mite (HDM) extract. Airway inflammation and the number of inflammatory cells in bronchoalveolar lavage fluids (BALFs) in the mice were determined by histological analysis and with a hemocytometer, respectively. Expression of mRNA in the lungs was determined by quantitative PCR, while the levels of cytokines in the BALFs and IgE in sera were determined by ELISA. RESULTS: Despite constitutive expression of TIM-3 mRNA in the lungs, the number of eosinophils in bronchoalveolar lavage fluids (BALFs) and the score of pulmonary inflammation were comparable between wild-type and TIM-3(−/−) mice during both acute and chronic HDM-induced airway inflammation. On the other hand, the number of lymphocytes in the BALFs of TIM-3(−/−) mice was significantly increased compared with wild-type mice during HDM-induced chronic, but not acute, airway inflammation, while the levels of Th2 cytokines in the BALFs and HDM-specific IgG1 and IgG2a and total IgE in the sera were comparable in both groups. CONCLUSIONS: Our findings indicate that, in mice, TIM-3 is not essential for development of HDM-induced acute or chronic allergic airway inflammation, although it appears to be involved in reduced lymphocyte recruitment during HDM-induced chronic allergic airway inflammation. |
---|