Cargando…

Oxide-based inorganic/organic and nanoporous spherical particles: synthesis and functional properties

This paper reviews the recent progress in the preparation of oxide-based and heteroatom-doped particles. Surfactant-templated oxide particles, e.g. silica and titania, are possible candidates for various potential applications such as adsorbents, photocatalysts, and optoelectronic and biological mat...

Descripción completa

Detalles Bibliográficos
Autores principales: Shiba, Kota, Tagaya, Motohiro, Tilley, Richard D, Hanagata, Nobutaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074371/
https://www.ncbi.nlm.nih.gov/pubmed/27877569
http://dx.doi.org/10.1088/1468-6996/14/2/023002
Descripción
Sumario:This paper reviews the recent progress in the preparation of oxide-based and heteroatom-doped particles. Surfactant-templated oxide particles, e.g. silica and titania, are possible candidates for various potential applications such as adsorbents, photocatalysts, and optoelectronic and biological materials. We highlight nanoporous oxides of one element, such as silicon or titanium, and those containing multiple elements, which exhibit properties that are not achieved with individual components. Although the multicomponent nanoporous oxides possess a number of attractive functions, the origin of their properties is hard to determine due to compositional/structural complexity. Particles with a well-defined size and shape are keys for a quantitative and detailed discussion on the unique complex properties of the particles. From this viewpoint, we review the synthesis techniques of the oxide particles, which are functionalized with organic molecules or doped with heteroatoms, the physicochemical properties of the particles and the possibilities for their photofunctional applications as complex systems.