Cargando…

Computational Screening of All Stoichiometric Inorganic Materials

Forming a four-component compound from the first 103 elements of the periodic table results in more than 10(12) combinations. Such a materials space is intractable to high-throughput experiment or first-principle computation. We introduce a framework to address this problem and quantify how many mat...

Descripción completa

Detalles Bibliográficos
Autores principales: Davies, Daniel W., Butler, Keith T., Jackson, Adam J., Morris, Andrew, Frost, Jarvist M., Skelton, Jonathan M., Walsh, Aron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074417/
https://www.ncbi.nlm.nih.gov/pubmed/27790643
http://dx.doi.org/10.1016/j.chempr.2016.09.010
_version_ 1782461721764429824
author Davies, Daniel W.
Butler, Keith T.
Jackson, Adam J.
Morris, Andrew
Frost, Jarvist M.
Skelton, Jonathan M.
Walsh, Aron
author_facet Davies, Daniel W.
Butler, Keith T.
Jackson, Adam J.
Morris, Andrew
Frost, Jarvist M.
Skelton, Jonathan M.
Walsh, Aron
author_sort Davies, Daniel W.
collection PubMed
description Forming a four-component compound from the first 103 elements of the periodic table results in more than 10(12) combinations. Such a materials space is intractable to high-throughput experiment or first-principle computation. We introduce a framework to address this problem and quantify how many materials can exist. We apply principles of valency and electronegativity to filter chemically implausible compositions, which reduces the inorganic quaternary space to 10(10) combinations. We demonstrate that estimates of band gaps and absolute electron energies can be made simply on the basis of the chemical composition and apply this to the search for new semiconducting materials to support the photoelectrochemical splitting of water. We show the applicability to predicting crystal structure by analogy with known compounds, including exploration of the phase space for ternary combinations that form a perovskite lattice. Computer screening reproduces known perovskite materials and predicts the feasibility of thousands more. Given the simplicity of the approach, large-scale searches can be performed on a single workstation.
format Online
Article
Text
id pubmed-5074417
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-50744172016-10-25 Computational Screening of All Stoichiometric Inorganic Materials Davies, Daniel W. Butler, Keith T. Jackson, Adam J. Morris, Andrew Frost, Jarvist M. Skelton, Jonathan M. Walsh, Aron Chem Article Forming a four-component compound from the first 103 elements of the periodic table results in more than 10(12) combinations. Such a materials space is intractable to high-throughput experiment or first-principle computation. We introduce a framework to address this problem and quantify how many materials can exist. We apply principles of valency and electronegativity to filter chemically implausible compositions, which reduces the inorganic quaternary space to 10(10) combinations. We demonstrate that estimates of band gaps and absolute electron energies can be made simply on the basis of the chemical composition and apply this to the search for new semiconducting materials to support the photoelectrochemical splitting of water. We show the applicability to predicting crystal structure by analogy with known compounds, including exploration of the phase space for ternary combinations that form a perovskite lattice. Computer screening reproduces known perovskite materials and predicts the feasibility of thousands more. Given the simplicity of the approach, large-scale searches can be performed on a single workstation. Elsevier 2016-10-13 /pmc/articles/PMC5074417/ /pubmed/27790643 http://dx.doi.org/10.1016/j.chempr.2016.09.010 Text en © 2016 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Davies, Daniel W.
Butler, Keith T.
Jackson, Adam J.
Morris, Andrew
Frost, Jarvist M.
Skelton, Jonathan M.
Walsh, Aron
Computational Screening of All Stoichiometric Inorganic Materials
title Computational Screening of All Stoichiometric Inorganic Materials
title_full Computational Screening of All Stoichiometric Inorganic Materials
title_fullStr Computational Screening of All Stoichiometric Inorganic Materials
title_full_unstemmed Computational Screening of All Stoichiometric Inorganic Materials
title_short Computational Screening of All Stoichiometric Inorganic Materials
title_sort computational screening of all stoichiometric inorganic materials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074417/
https://www.ncbi.nlm.nih.gov/pubmed/27790643
http://dx.doi.org/10.1016/j.chempr.2016.09.010
work_keys_str_mv AT daviesdanielw computationalscreeningofallstoichiometricinorganicmaterials
AT butlerkeitht computationalscreeningofallstoichiometricinorganicmaterials
AT jacksonadamj computationalscreeningofallstoichiometricinorganicmaterials
AT morrisandrew computationalscreeningofallstoichiometricinorganicmaterials
AT frostjarvistm computationalscreeningofallstoichiometricinorganicmaterials
AT skeltonjonathanm computationalscreeningofallstoichiometricinorganicmaterials
AT walsharon computationalscreeningofallstoichiometricinorganicmaterials