Cargando…
Dissecting the Origin of Breast Cancer Subtype Stem Cell and the Potential Mechanism of Malignant Transformation
BACKGROUND: Breast cancer is the most common incident form of cancer in women including different subtypes. Cancer stem cells (CSCs) have been confirmed to exist in breast cancer. But the research on the origin of breast cancer subtype stem cells (BCSSCs) is still inadequate. METHODS: We identified...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074511/ https://www.ncbi.nlm.nih.gov/pubmed/27768723 http://dx.doi.org/10.1371/journal.pone.0165001 |
_version_ | 1782461734501482496 |
---|---|
author | Liu, Xinyi Feng, Dongfei Liu, Dianming Wang, Shuyuan Yu, Xuexin Dai, Enyu Wang, Jing Wang, Lihong Jiang, Wei |
author_facet | Liu, Xinyi Feng, Dongfei Liu, Dianming Wang, Shuyuan Yu, Xuexin Dai, Enyu Wang, Jing Wang, Lihong Jiang, Wei |
author_sort | Liu, Xinyi |
collection | PubMed |
description | BACKGROUND: Breast cancer is the most common incident form of cancer in women including different subtypes. Cancer stem cells (CSCs) have been confirmed to exist in breast cancer. But the research on the origin of breast cancer subtype stem cells (BCSSCs) is still inadequate. METHODS: We identified the putative origin cells of BCSSCs through comparing gene signatures between BCSSCs and normal mammary cells from multiple perspectives: common signature, expression consistency, functional similarity and shortest path length. First, the potential origin cells were ranked according to these measures separately. Then Q statistic was employed to combine all rank lists into a unique list for each subtype, to prioritize the origin cells for each BCSSC. Next, we identified origin-related gene modules through integrating functional interaction network with differentially expressed genes. Finally, transcription factors of significant gene modules were predicted by Match(TM). RESULTS: The results showed that Luminal A CSC was most relevant to luminal progenitor cell or mature luminal cell; luminal B and HER2 CSC were most relevant to bipotent-enriched progenitor cell; basal-like CSC was most relevant to bipotent-enriched progenitor cell or mature luminal cell. Network modules analysis revealed genes related to mitochondrial respiratory chain (MRC) were significantly dysregulated during the origin of luminal B CSC. In addition, SOX10 emerged as a key regulator of MRC. CONCLUSIONS: Our study supports substantive evidence for the possible origin of four kinds of BCSSCs. Dysfunction of MRC may contribute to the origin of luminal B CSC. These findings may have important implications to treat and prevent breast cancer. |
format | Online Article Text |
id | pubmed-5074511 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-50745112016-11-04 Dissecting the Origin of Breast Cancer Subtype Stem Cell and the Potential Mechanism of Malignant Transformation Liu, Xinyi Feng, Dongfei Liu, Dianming Wang, Shuyuan Yu, Xuexin Dai, Enyu Wang, Jing Wang, Lihong Jiang, Wei PLoS One Research Article BACKGROUND: Breast cancer is the most common incident form of cancer in women including different subtypes. Cancer stem cells (CSCs) have been confirmed to exist in breast cancer. But the research on the origin of breast cancer subtype stem cells (BCSSCs) is still inadequate. METHODS: We identified the putative origin cells of BCSSCs through comparing gene signatures between BCSSCs and normal mammary cells from multiple perspectives: common signature, expression consistency, functional similarity and shortest path length. First, the potential origin cells were ranked according to these measures separately. Then Q statistic was employed to combine all rank lists into a unique list for each subtype, to prioritize the origin cells for each BCSSC. Next, we identified origin-related gene modules through integrating functional interaction network with differentially expressed genes. Finally, transcription factors of significant gene modules were predicted by Match(TM). RESULTS: The results showed that Luminal A CSC was most relevant to luminal progenitor cell or mature luminal cell; luminal B and HER2 CSC were most relevant to bipotent-enriched progenitor cell; basal-like CSC was most relevant to bipotent-enriched progenitor cell or mature luminal cell. Network modules analysis revealed genes related to mitochondrial respiratory chain (MRC) were significantly dysregulated during the origin of luminal B CSC. In addition, SOX10 emerged as a key regulator of MRC. CONCLUSIONS: Our study supports substantive evidence for the possible origin of four kinds of BCSSCs. Dysfunction of MRC may contribute to the origin of luminal B CSC. These findings may have important implications to treat and prevent breast cancer. Public Library of Science 2016-10-21 /pmc/articles/PMC5074511/ /pubmed/27768723 http://dx.doi.org/10.1371/journal.pone.0165001 Text en © 2016 Liu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Liu, Xinyi Feng, Dongfei Liu, Dianming Wang, Shuyuan Yu, Xuexin Dai, Enyu Wang, Jing Wang, Lihong Jiang, Wei Dissecting the Origin of Breast Cancer Subtype Stem Cell and the Potential Mechanism of Malignant Transformation |
title | Dissecting the Origin of Breast Cancer Subtype Stem Cell and the Potential Mechanism of Malignant Transformation |
title_full | Dissecting the Origin of Breast Cancer Subtype Stem Cell and the Potential Mechanism of Malignant Transformation |
title_fullStr | Dissecting the Origin of Breast Cancer Subtype Stem Cell and the Potential Mechanism of Malignant Transformation |
title_full_unstemmed | Dissecting the Origin of Breast Cancer Subtype Stem Cell and the Potential Mechanism of Malignant Transformation |
title_short | Dissecting the Origin of Breast Cancer Subtype Stem Cell and the Potential Mechanism of Malignant Transformation |
title_sort | dissecting the origin of breast cancer subtype stem cell and the potential mechanism of malignant transformation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074511/ https://www.ncbi.nlm.nih.gov/pubmed/27768723 http://dx.doi.org/10.1371/journal.pone.0165001 |
work_keys_str_mv | AT liuxinyi dissectingtheoriginofbreastcancersubtypestemcellandthepotentialmechanismofmalignanttransformation AT fengdongfei dissectingtheoriginofbreastcancersubtypestemcellandthepotentialmechanismofmalignanttransformation AT liudianming dissectingtheoriginofbreastcancersubtypestemcellandthepotentialmechanismofmalignanttransformation AT wangshuyuan dissectingtheoriginofbreastcancersubtypestemcellandthepotentialmechanismofmalignanttransformation AT yuxuexin dissectingtheoriginofbreastcancersubtypestemcellandthepotentialmechanismofmalignanttransformation AT daienyu dissectingtheoriginofbreastcancersubtypestemcellandthepotentialmechanismofmalignanttransformation AT wangjing dissectingtheoriginofbreastcancersubtypestemcellandthepotentialmechanismofmalignanttransformation AT wanglihong dissectingtheoriginofbreastcancersubtypestemcellandthepotentialmechanismofmalignanttransformation AT jiangwei dissectingtheoriginofbreastcancersubtypestemcellandthepotentialmechanismofmalignanttransformation |