Cargando…

De Novo Transcriptomes of Forsythia koreana Using a Novel Assembly Method: Insight into Tissue- and Species-Specific Expression of Lignan Biosynthesis-Related Gene

Forsythia spp. are perennial woody plants which are one of the most extensively used medicinal sources of Chinese medicines and functional diets owing to their lignan contents. Lignans have received widespread attention as leading compounds in the development of antitumor drugs and healthy diets for...

Descripción completa

Detalles Bibliográficos
Autores principales: Shiraishi, Akira, Murata, Jun, Matsumoto, Erika, Matsubara, Shin, Ono, Eiichiro, Satake, Honoo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074596/
https://www.ncbi.nlm.nih.gov/pubmed/27768772
http://dx.doi.org/10.1371/journal.pone.0164805
_version_ 1782461748777844736
author Shiraishi, Akira
Murata, Jun
Matsumoto, Erika
Matsubara, Shin
Ono, Eiichiro
Satake, Honoo
author_facet Shiraishi, Akira
Murata, Jun
Matsumoto, Erika
Matsubara, Shin
Ono, Eiichiro
Satake, Honoo
author_sort Shiraishi, Akira
collection PubMed
description Forsythia spp. are perennial woody plants which are one of the most extensively used medicinal sources of Chinese medicines and functional diets owing to their lignan contents. Lignans have received widespread attention as leading compounds in the development of antitumor drugs and healthy diets for reducing the risks of lifestyle-related diseases. However, the molecular basis of Forsythia has yet to be established. In this study, we have verified de novo deep transcriptome of Forsythia koreana leaf and callus using the Illumina HiSeq 1500 platform. A total of 89 million reads were assembled into 116,824 contigs using Trinity, and 1,576 of the contigs displayed the sequence similarity to the enzymes responsible for plant specialized metabolism including lignan biosynthesis. Notably, gene ontology (GO) analysis indicated the remarkable enrichment of lignan-biosynthetic enzyme genes in the callus transcriptome. Nevertheless, precise annotation and molecular phylogenetic analyses were hindered by partial sequences of open reading frames (ORFs) of the Trinity-based contigs. To obtain more numerous contigs harboring a full-length ORF, we developed a novel overlapping layout consensus-based procedure, virtual primer-based sequence reassembly (VP-seq). VP-seq elucidated 709 full-length ORFs, whereas only 146 full-length ORFs were assembled by Trinity. The comparison of expression profiles of leaf and callus using VP-seq-based full-length ORFs revealed 50-fold upregulation of secoisolariciresinol dehydrogenase (SIRD) in callus. Expression and phylogenetic cluster analyses predicted candidates for matairesinol-glucosylating enzymes. We also performed VP-seq analysis of lignan-biosynthetic enzyme genes in the transcriptome data of other lignan-rich plants, Linum flavum, Linum usitatissimum and Podophyllum hexandrum. The comparative analysis indicated both common gene clusters involved in biosynthesis upstream of matairesinol such as SIRD and plant lineage-specific gene clusters, in particular, genes responsible for biosynthetic pathways for production of podophyllotoxin; CYP71BE54, a key enzyme gene for podophyllotoxin biosynthesis in P. hexandrum, was not found in L. flavum, although both P. hexandrum. and L. flavum yield podophyllotoxin. Altogether, these data have established the fruitful molecular basis of Forsythia and provided insight into the molecular evolution and diversity of lignan biosynthetic pathways.
format Online
Article
Text
id pubmed-5074596
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-50745962016-11-04 De Novo Transcriptomes of Forsythia koreana Using a Novel Assembly Method: Insight into Tissue- and Species-Specific Expression of Lignan Biosynthesis-Related Gene Shiraishi, Akira Murata, Jun Matsumoto, Erika Matsubara, Shin Ono, Eiichiro Satake, Honoo PLoS One Research Article Forsythia spp. are perennial woody plants which are one of the most extensively used medicinal sources of Chinese medicines and functional diets owing to their lignan contents. Lignans have received widespread attention as leading compounds in the development of antitumor drugs and healthy diets for reducing the risks of lifestyle-related diseases. However, the molecular basis of Forsythia has yet to be established. In this study, we have verified de novo deep transcriptome of Forsythia koreana leaf and callus using the Illumina HiSeq 1500 platform. A total of 89 million reads were assembled into 116,824 contigs using Trinity, and 1,576 of the contigs displayed the sequence similarity to the enzymes responsible for plant specialized metabolism including lignan biosynthesis. Notably, gene ontology (GO) analysis indicated the remarkable enrichment of lignan-biosynthetic enzyme genes in the callus transcriptome. Nevertheless, precise annotation and molecular phylogenetic analyses were hindered by partial sequences of open reading frames (ORFs) of the Trinity-based contigs. To obtain more numerous contigs harboring a full-length ORF, we developed a novel overlapping layout consensus-based procedure, virtual primer-based sequence reassembly (VP-seq). VP-seq elucidated 709 full-length ORFs, whereas only 146 full-length ORFs were assembled by Trinity. The comparison of expression profiles of leaf and callus using VP-seq-based full-length ORFs revealed 50-fold upregulation of secoisolariciresinol dehydrogenase (SIRD) in callus. Expression and phylogenetic cluster analyses predicted candidates for matairesinol-glucosylating enzymes. We also performed VP-seq analysis of lignan-biosynthetic enzyme genes in the transcriptome data of other lignan-rich plants, Linum flavum, Linum usitatissimum and Podophyllum hexandrum. The comparative analysis indicated both common gene clusters involved in biosynthesis upstream of matairesinol such as SIRD and plant lineage-specific gene clusters, in particular, genes responsible for biosynthetic pathways for production of podophyllotoxin; CYP71BE54, a key enzyme gene for podophyllotoxin biosynthesis in P. hexandrum, was not found in L. flavum, although both P. hexandrum. and L. flavum yield podophyllotoxin. Altogether, these data have established the fruitful molecular basis of Forsythia and provided insight into the molecular evolution and diversity of lignan biosynthetic pathways. Public Library of Science 2016-10-21 /pmc/articles/PMC5074596/ /pubmed/27768772 http://dx.doi.org/10.1371/journal.pone.0164805 Text en © 2016 Shiraishi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Shiraishi, Akira
Murata, Jun
Matsumoto, Erika
Matsubara, Shin
Ono, Eiichiro
Satake, Honoo
De Novo Transcriptomes of Forsythia koreana Using a Novel Assembly Method: Insight into Tissue- and Species-Specific Expression of Lignan Biosynthesis-Related Gene
title De Novo Transcriptomes of Forsythia koreana Using a Novel Assembly Method: Insight into Tissue- and Species-Specific Expression of Lignan Biosynthesis-Related Gene
title_full De Novo Transcriptomes of Forsythia koreana Using a Novel Assembly Method: Insight into Tissue- and Species-Specific Expression of Lignan Biosynthesis-Related Gene
title_fullStr De Novo Transcriptomes of Forsythia koreana Using a Novel Assembly Method: Insight into Tissue- and Species-Specific Expression of Lignan Biosynthesis-Related Gene
title_full_unstemmed De Novo Transcriptomes of Forsythia koreana Using a Novel Assembly Method: Insight into Tissue- and Species-Specific Expression of Lignan Biosynthesis-Related Gene
title_short De Novo Transcriptomes of Forsythia koreana Using a Novel Assembly Method: Insight into Tissue- and Species-Specific Expression of Lignan Biosynthesis-Related Gene
title_sort de novo transcriptomes of forsythia koreana using a novel assembly method: insight into tissue- and species-specific expression of lignan biosynthesis-related gene
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074596/
https://www.ncbi.nlm.nih.gov/pubmed/27768772
http://dx.doi.org/10.1371/journal.pone.0164805
work_keys_str_mv AT shiraishiakira denovotranscriptomesofforsythiakoreanausinganovelassemblymethodinsightintotissueandspeciesspecificexpressionoflignanbiosynthesisrelatedgene
AT muratajun denovotranscriptomesofforsythiakoreanausinganovelassemblymethodinsightintotissueandspeciesspecificexpressionoflignanbiosynthesisrelatedgene
AT matsumotoerika denovotranscriptomesofforsythiakoreanausinganovelassemblymethodinsightintotissueandspeciesspecificexpressionoflignanbiosynthesisrelatedgene
AT matsubarashin denovotranscriptomesofforsythiakoreanausinganovelassemblymethodinsightintotissueandspeciesspecificexpressionoflignanbiosynthesisrelatedgene
AT onoeiichiro denovotranscriptomesofforsythiakoreanausinganovelassemblymethodinsightintotissueandspeciesspecificexpressionoflignanbiosynthesisrelatedgene
AT satakehonoo denovotranscriptomesofforsythiakoreanausinganovelassemblymethodinsightintotissueandspeciesspecificexpressionoflignanbiosynthesisrelatedgene