Cargando…
Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network
Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural net...
Autores principales: | Li, Na, Zhao, Xinbo, Yang, Yongjia, Zou, Xiaochun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075645/ https://www.ncbi.nlm.nih.gov/pubmed/27803711 http://dx.doi.org/10.1155/2016/7942501 |
Ejemplares similares
-
Learning-Based Visual Saliency Model for Detecting Diabetic Macular Edema in Retinal Image
por: Zou, Xiaochun, et al.
Publicado: (2016) -
Learning to Model Task-Oriented Attention
por: Zou, Xiaochun, et al.
Publicado: (2016) -
A novel fully convolutional network for visual saliency prediction
por: Ghariba, Bashir Muftah, et al.
Publicado: (2020) -
Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network
por: Liu, Ziyi, et al.
Publicado: (2016) -
Sunflower seeds classification based on sparse convolutional neural networks in multi-objective scene
por: Jin, Xiaowei, et al.
Publicado: (2022)